Quickstart Guide xDB -3-200

Prerequisites:

- IFM control / display control
- CODESYS 3.5 with necessary packages
- DATA PANEL xtremeDB (DP-34044-3-200) module + accessories
- DC 12 / 24 V supply

CODESYS PREPARATION

Depending on the type of controller you are working with, the corresponding packages must be installed in CODESYS.

The packages for the respective controller are supplied or you can obtain them from
i the manufacturer's website or the CODESYS Store. A login may be required for the download.

- Open CODESYS
- Open the package manager via the task bar "Tools -> Package Manager... "
- Right click on "Install..." and install the corresponding package
- In the following example the integration of an ifm display control is described

- Double-click or "Open" to install the package (this may take a moment)
- If the installation was successful, a corresponding message appears

CODESYS PREPARE

Install EDS device file

The permalink below always points to the latest firmware and *. eds file: https://drive.google.com/file/d/1EpLsbH6_-dCNHN4p33Llck5KjBTa8ahq/view

- Open the device repository via "Tools->Device Repository" at the top of the taskbar.
- A new device can be installed via the "Install..." button
- Double click on the desired file, alternatively select and open the *. eds file manually. The device appears in the list of added devices.

CODESYS PREPARE

CODESYS project

- Open CODESYS
- Create a new project via File -> New project
- Select the corresponding control via the library and confirm with OK. The action may take some time.

谄 Neues Projekt \times						
Kategorien		Vorlagen				
Projektvorlage ifm ecomatDisplay_64bit, $10{ }^{*}$						
Name Ort	MusterProjektDB					
	C: \|Users\Admin	Documents			$\checkmark .$.	
OK Abbrechen						

CAN communication

- Open the communication path and right click on "CAN -> Attach device".
- Select "ifm" under the manufacturer and append the "ifmCANbus
- Close window

The controller must be CANopen capable. If you want to work with SAE J1939, you can find a CODESYS function block for our modules under the following links:
V2.3: https://www.data-panel.eu/media/archive/CODESYS-23-Demo-DP-34044-x-000.zip
V3.5: https://www.data-panel.eu/media/archive/CODESYS-35-Demo-DP-34044-x-000.zip

CODESYS PREPARE

CANopen Manager

- Right click on the just inserted "ifmCANbus -> Attach device".
- Change manufacturer filter to <all manufacturers>.
- Select the device via "CANopen -> CANopenManager -> CANopenManager" and attach it.

Anhängen des ausgewählten Geräts als letztes "Kind" von ifmCANbus
(i) (Sie können einen anderen Zielgerätknoten im Navigator auswählen, solange dieses Fenster geöffnet ist)

CODESYS PREPARE

STEP 1

- Append a new device to the CANopen_Manager (right click -> Append device)
- Select the correct module based on the *. eds file and close it

STEP 2

- Open the configuration of the new device and set the node ID.
- Then go online, no errors should appear in CODESYS, the COM LED on the module should be permanently green.

(!) ADDRESS

- The module has the base node ID 1 preset
- The offset set by means of wire jumpers on the module is added to the base node ID. If the node ID 2 is set in CODESYS, the offset 1 must therefore be jumpered on the module.

(1)

VENDOR ID

For the first series modules, the vendor ID was not stored in the firmware. In this case please either update the firmware of the module or deactivate the check of the vendor ID.

SDO GLOBAL / INDIVIDUAL

There are two possibilities to configure the signal pins of the module. The global configuration by means of index 2000:3 or alternatively the individual configuration by means of index 2001.

Example of global configuration:

If e.g. a 1 is stored in index 2000:3, all signal pins are configured as digital outputs (DO).

2000		Spare			5,6	Spare
		Spare			7,8	Spare
	3	Output Mode	Byte	3	-	Sets the global configuration of ALL the outputs. Overrides Index 2001. 0=Mode 1 Not Used, 1=ON/OFF, 2=Data 0-4000, 3=Percent 0-100.0\% (0-1000) ($4=A m p s(0-4000 \mathrm{~mA}$) cannot be used in this mode)

Only digital outputs can be parameterized via the global configuration. For other signal types (PWM, PWMi or DO 10A) the individual configuration must be carried out.

Individual configuration:

The index 2001:x is used for the individual configuration. The subindex 2001:1 is used among others for the individual configuration of port 1 ($\mathrm{A} \& B$). The configuration values are identical to index 2000. The parameterization is done in hex code, the first digit is valid for port 1 pin $B(2)$ and the second digit for port 1 pin A (4).

The first digit configures pin 2 (signal B), the second digit the pin 4 (signal A) of the respective port. For an individual configuration the index 2000:3 must be set to "0".

OUTPUT DO - GLOBAL

For the global configuration of all outputs as DO (black and white) normally no configuration steps in the SDO are necessary. If the entire module is to be configured as DO, it is necessary to write the value 11 to index 2000:3. Thereby all signal pins are configured as DO.

The CANopen I/O image can be used to declare and activate the variables for ports 1 to 8. Either the entire integer variable Output_1 can be used for this, alternatively the individual bits can also be declared.

Find	Filter Show all				- Add FB for IO Channel... \rightarrow Go to Instance		
Variable \square^{κ}	Mapping	Channel Output_1	Address $\% \text { QB20 }$	Type USINT	Current Value $2 \approx 00010001$	Prepared Value	Unit
*) D3OutputB0	,	Bito	\%QX20.0	BOOL	TRUE	P1A	
*. D3OutputB1	\%	Bit1	$\% \mathrm{Q} \times 20.1$	BOOL	FALSE	P1B	
\cdots		Bit2	\%Q×20.2	BOOL	FALSE	P2A	
5		Bit3	\%Qx20.3	BOOL	FALSE	P2B	
${ }_{0}$		Bit4	\%Qx20.4	BOOL	TRUE	P3A	
${ }^{*}$		Bit5	\%Q×20.5	BOOL	FALSE	P3B	
\%		Bit6	\%Qx20.6	BOOL	FALSE	P4A	
${ }^{*}$		Bit7	\%Q×20.7	BOOL	FALSE	P4B	
- ${ }^{*}$ Dash3Output2	\%	Output_2	\%QB21	USINT	2\#11111111		
${ }^{*}$		Bito	\%Qx21.0	BOOL	TRUE	P5A	
${ }^{*}$		Bit1	\%Qx21.1	BOOL	TRUE	P5B	
${ }_{0}$		Bit2	\%Qx21.2	BOOL	TRUE	P6A	
5		Bit3	\%Qx21.3	BOOL	TRUE	P6B	
\cdots		Bit4	\%QX21.4	BOOL	TRUE	P7A	
5		Bit5	\%Qx21.5	BOOL	TRUE	P7B	
\cdots		Bit6	\%Qx21.6	BOOL	TRUE	P8A	
*		Bit7	\%QX21.7	BOOL	TRUE	P8B	
***		Port_1A	\%QW11	UINT	2\#0000000000000000		
+ * /		nact 10	\%rnuw 17	1 irnm			

Go online with the controller and download the program. Force the variable D3OutputB0 to "True". Alternatively, store a value in the Dash3Output2 variable.

OUTPUT PWM EXAMPLE PORT 1 B \& PORT 2 A\&B INDIVIDUAL

To use the module with PWM outputs it is necessary that the signal pins are configured individually. For this purpose the global configuration index 2000:3 must be set to $\mathbf{0}$.
For each subindex there are 2 values for configuration. See also SDO global / individual. Example: For the configuration of signals 1B and 2 AB as PWMi output, index 2001:1 must be written with "40" and 2001:2 with "44". Further configuration possibilities can be taken from the manual.

57	16\#2000:16\#03	Output_Mode	$16 \# 00$	8	\square	\square	0
58	16\#2001:16\#01	OUTMODE_1	$16 \# 40$	8	\square	\square	0
59	$16 \# 2001: 16 \# 02$	OUTMODE_2	$16 \# 44$	8	\square	\square	0

!. At port 1 and 3 only pin 2 (signal B) is configurable as PWM / PWMi output

Afterwards the different ports can be switched via the CANopen I/O image. For this purpose assign a value between 0-4000 (0-4 A) e.g. Port_1B.
? If a value greater than 4000 is written, the maximum value of 4000 is set

DATA PANEL
 POWERED BY MURRELEKTRONIK

OUTPUT DO EXAMPLE PORT 1 A \& PORT 3 A\&B + 10 A INDIVIDUAL

If all signal pins are to be configured as DO, the global configuration can be used (see p. 8). For individual, pin-based configuration, the global configuration index 2000:3 must first be set to the value " 0 ".

For each subindex there are 2 values for configuration. See also SDO global / individual. E.g. for a configuration of port 1A as DO, the index 2001:1 is set with "01". Further possible configurations can be found in the manual.

SDO timeout (ms) $1000 \quad \square$ Create all SDOs \square Write complete PDO configuration

Only outputs 1A and 3A can be loaded with output currents up to 10 A

Afterwards the outputs can be switched via the CANopen I/O image.

(1)
DOs can only be switched via the variables Output_1 \& Output_2

Find	Filter Show all			- \ddagger Add FB	
Variable	Mapping \qquad	Channel Outrout 1	Address OODEO	Type ucrar	
${ }^{*}$		Bito	\%QX20.0	BOOL	TRUE
\checkmark		bit1	\%QX20.1	BOOL	FALSE
${ }^{\circ}$		Bit2	\%Q×20.2	BOOL	FALSE
${ }^{2}$		Bit3	$\% \times 20.3$	BOOL	FALSE
${ }^{\circ}$		Bit4	$\%$ \% 20.4	BOOL	TRUE
${ }^{\circ}$		Bit5	\%QX20.5	BOOL	TRUE
${ }^{0}$		Bit6	\%QX20.6	BOOL	FALSE
*		Bit7	\%Q×20.7	BOOL	FALSE
- ${ }^{\text {F }}$ Dash3Output2	,	Output_2	\%QB21	USINT	2\#00000000
\%		Bit0	\%QX21.0	BOOL	FALSE
${ }^{6}$		Bit1	\%QX21.1	BOOL	FALSE
\%		Bit2	\%Qx21.2	BOOL	FALSE
5		Bit3	$\%$ \% 21.3	BOOL	FALSE
${ }^{*}$		Bit4	\%QX21.4	BOOL	FALSE
5		Bit5	\%Qx21.5	BOOL	FALSE
		Bit6	\%QX21.6	BOOL	FALSE
*		Bit7	\%QX21.7	BOOL	FALSE

OUTPUT DO EXAMPLE PORT 1 A +10A \& PORT 3 A\&B INDIVIDUAL

With the outputs 1A and 3A actuators up to a current of 10 A can be switched.
For this purpose, a value between 0-100 ($0-10,0 \mathrm{~A} / 100 \mathrm{~mA}$ steps) can be stored in the index 2004:1. If, for example, "40" is stored, the output current is set to max. 4,0 A. Further possible configurations can be found in the manual.

- $16 \# 2004$	Module 10A Limit Configuration			
- 16 ± 00	Highest sub-index supported	RW	USINT	$16 \# 2$
- :16\#01	Port_1A	RW	USINT	0
-: $16=02$	Port_3A	RW	USINT	0
- 16\#3000:16\#00	Frequency	RW	UINT	0

57	$16 \# 2000: 16 \# 03$	Output_Mode	$16 \# 00$	8	\square
58	$16 \# 2001: 16 \# 01$	OUTMODE_1	$16 \# 10$	8	\square
59	$16 \# 2001: 16 \# 03$	OUTMODE_3	$16 \# 11$	8	\square
60	$16 \# 2004: 16 \# 01$	Port_1A	$16 \# 55$	8	\square

OUTPUT PWMI PORT 4 A - KP \& KI CONTROL BEHAVIOR

A PI controller is integrated in the module. The individual PWMi outputs can be adjusted in their control behavior. For each port (A or B) the control behavior can be configured individually.

For a control behavior at port 4 A the index 2002:0D \& 2002:0E should be described. Values between 0 and 250 are possible ($0-2.5$)

Select Item from Object Directory \times					
Index:Subindex	Name	AccessType	Type	Default	\wedge
t $16=2000$	Module Global Configuration				
+ $16 \# 2001$	Module Output Configuration				
- $16=2002$	Module PWM PID Configuration				
-:16\#00	Highest sub-index supported	RW	USINT	$16 \# 20$	
-:16 01	Port1A_Kp	RW	USINT	0	
- $16=02$	Port1A_K	RW	USINT	0	
- :16=03	Port1B_Kp	RW	USINT	0	
- :16 $=04$	PortiB_K	RW	USINT	0	
- :16\#05	Port2A_Kp	RW	USINT	0	
-: $16=06$	Port2A_K	RW	USINT	0	
-:16\#07	Port2B_Kp	RW	USINT	0	
- :16=08	Port2B_K	RW	USINT	0	
- :16 009	Port3A_Kp	RW	USINT	0	
- :16\#0A	Port3A_K	RW	USINT	0	
- $: 16=0 \mathrm{~B}$	Port38_Kp	RW	USINT	0	
-10000	Tortava	nv*	couvi	-	
- :16\#0D	Port4A_Kp	RW	USINT	0	
- $: 16 \approx 0 \mathrm{E}$	Port4A_K	RW	USINT	0	
Tour	Prictoje	*w	uourt		
- : $16=10$	Port4B_Ki	RW	USINT	0	
-:16\#11	Port5A_Kp	RW	USINT	0	
-: 16 \#12	Port5A_K	RW	USINT	0	
-:16\#13	Port5B_Kp	RW	USINT	0	
-: $16=14$	Port5B_K	RW	USINT	0	
-: $16=15$	Port6A_Kp	RW	USINT	0	
-:16\#16	Port6A_K	RW	USINT	0	
-: 16 ± 17	Port6B_Kp	RW	USINT	0	
- :16\#18	Port6B_Ki	RW	USINT	0	\checkmark
$<$)		
Name	Unknown Object				
Index	\div Bit length 8	\checkmark			
Subindex	\div Value 0				

(1)
If no value is stored in the respective index, the default value of 100 applies

DIAGNOSTICS PORT 5 A \& B AMP FEEDBACK

For each individual signal pin (A or B), the current currently applied can be read back. To activate the function it is necessary to activate the diagnosis via SDO:
For this purpose the index 5003:0 should be set with "10" (default value), then the applied current can be read back via the channel

56	16\#1808:16\#01	Set and enable COB-ID	$16 \# 000003 \mathrm{C} 1$	32	\square	\square	0
57	16\#2000:16=03	Output_Mode	$16 \# 00$	8	\square	\square	0
58	16\#2001:16\#01	OUTMODE_1	$16 \# 10$	8	\square	\square	0
59	16\#2001:16=03	OUTMODE_3	16 \#11	8	\square	\square	0
60	16\#2004:16\#01	Port_1A	16\#55	8	\square	\square	0
61	16\#5003:16\#00	Highest sub-index supported	16\#10	8	\square	\square	0

©If no value is displayed, the index 1807 / 1808 / 1809 / 180A :5 must be written with "C0" to switch on the cyclic exchange of the signals.
i
If a constant load is used, the applied current is governed by Ohm's law. When using PWMi, the control behavior of the output can additionally be influenced by the proportional and integral component (see p. 12).

DIAGNOSTICS PORT 5 A \& B AMP FEEDBACK

If now e.g. a current value is given to the channel Port_5A (below declared as variable D3Output_5A), the applied current on the channel Port_5A (below declared as variable D3Output_5AFB) can be read back.

Both channels have the same channel name, the actual values are returned to the variable with the higher address and the _FB (feedback) appendix.

Variable	Mapping	Channel	Address	Type	
\pm K\%		Port_4B	\%QW18	UINT	2 ± 0000000000000000
+ ${ }^{\circ} \mathrm{C}$ D3Output_5A	\%	Port_5A	\%QW19	UINT	2\#0000100111000100
+ D3Output_58	,	Port_5B	\%QW20	UINT	2 ± 0000000000000000
$+{ }^{*}$		Port_6A	\%QW21	UINT	$2=0000000000000000$
$\pm{ }^{+}$		Port_6B	\%QW22	UINT	2=0000000000000000
$\pm{ }^{+}$		Port_7A	\%QW23	UINT	2 ± 0000000000000000
$\pm{ }^{+}$		Port_7B	\%QW24	UINT	2\#0000000000000000
+ 0		Port_8A	\%QW25	UINT	2 $=0000000000000000$
$\pm{ }^{*}$		Port_8B	\%QW26	UINT	$2=0000000000000000$
+ ${ }^{0}$		d1-d8	\%IB70	USINT	2 $=00000000$
± 0		d9-d16	\%IB71	USINT	2\#00000000
± 40		Active_Fault_Code	\%1872	USINT	$2=00000000$
$\pm{ }^{+} \times$		Configuration_ID	\%1873	USINT	2\#00000000
$\pm{ }^{+3}$		d1-d8_Message	\%IB74	USINT	$2=00000000$
± 40		d9-d16_Message	\%IB75	USINT	$2=00000000$
+ ${ }^{0}$		Status_Output1-2	\%IB76	USINT	2=00000000
± 4		Status_Output3-4	\%1877	USINT	$2=00000000$
+ x_{0}		Status_Output5-6	\%IB78	USINT	2=00000000
$\pm x^{4}$		Status_Output7-8	\%IB79	USINT	2=00000000
± 4		Power	\%IP80	USINT	$2=00000000$
+ 40		Save_Counter	\%IB81	USINT	2=00000000
+ 4		VBAT	\%IW41	UINT	2 ± 0000000000000000
± 40		TEMP	\%IW42	UINT	2\#0000000000000000
+ x_{0}		CNFG1	\%IW43	UINT	2 $=0000000000000000$
± 4		CNFG2	\%IW44	UINT	2 ± 0000000000000000
+ ${ }^{+0}$		Port_1A	\%IW45	UINT	2\#0000000000000000
$\pm \times 10$		Port_1B	\%IW46	UINT	2\#0000000000000000
$\pm{ }^{+4}$		Port_2A	\%IW47	UINT	$2=0000000000000000$
+ + \%		Port_2B	\%IW48	UINT	2 20000000000000000
± 4		Port_3A	\%IW49	UINT	2 ± 0000000000000000
+ 4		Port_38	\%WW50	UINT	2\#0000000000000000
\square		Port_4A	\%IW51	UINT	2\#0000000000000000
± 4		Port_4B	\%IW52	UINT	2 ± 0000000000000000
$\pm{ }^{4}$ D D3Output5A_FB	4	Port_5A	\%IW53	UINT	2=0000000000011001
(${ }^{\text {x }}$ D3Output5B_FB	-	Port_5B	\%IW54	UINT	2\#0000000000000000
+ *		Port_6A	\%WW55	UINT	$2=0000000000000000$

DIAGNOSTICS PORT 5 PIN A \& B STATUS / ERROR

In addition to the current values read back, the status of the individual pins can also be queried. Index 5001 must be activated for this purpose.

Then the status of the outputs on port 5 and 6 can be queried via the variable
Status_Output5-6. If an output is activated, the first bit is set. If an error occurs at the output, the second bit is set.

If no value is displayed, the index 1805:5 must be set to "CO". This SDO takes care of the cyclic exchange of the signals.

vo	107<vunisumu	vuirivul_u	10サTT	\bigcirc	-	\square
61	16\#2004:16 $=01$	Port_1A	$16 \# 55$	8	\square	\square
62	16\#1809: $16=05$	Event Timer	16\#FF	16	\square	\square
63	$16 \# 5003: 16=00$	Highest sub-index supported	16 \# 10	8	\square	\square
64	16\#5001:16 $=00$	Highest sub-index supported	16\#8	8	\square	\square
65	16\#5002:16\#00	Highest sub-index supported	16\#5	8	\square	\square

+ ${ }^{\text {\% }}$ D3Output_5A	,	Port_5A	\%QW19	UINT	$2 \# 0000100111000100$
+-` D3Output_58		Port_58	\%QW20	UINT	$2=0000000000000000$
$\pm \mathrm{K}_{6}$		Port_6A	\%QW21	UINT	$2=0000000000000000$
$\pm \pi$		Port_6B	\%QW22	UINT	$2=0000000000000000$
$+{ }^{+1}$		Port_7A	\%QW23	UINT	$2=0000000000000000$
+ 5		Port_7B	\%QW24	UINT	$2=0000000000000000$
$\pm \pi$		Port_8A	\%QW25	UINT	$2=0000000000000000$
$+{ }^{5}$		Port_8B	\%QW26	UINT	$2=0000000000000000$
+ ${ }^{+1}$		d1-d8	\%IB70	USINT	$2 \geqslant 00000000$
+ ${ }^{4}$		d9-d16	\%IB71	USINT	$2=00000000$
$+{ }^{+1}$		Active_Fault_Code	\%IB72	USINT	2=00000000
+ 4		Configuration_ID	\%IB73	USINT	$2=00000000$
$\pm{ }^{+13}$		d1-d8_Message	\%IB74	USINT	$2=00000000$
$+{ }^{+1}$		d9-d16_Message	\%IB75	USINT	$2=11111100$
+ 4		Status_Output1-2	\%IB76	USINT	$2=00000000$
+ ${ }^{4}$		Status_Output3-4	\%IB77	USINT	$2=00000000$
-43		Status_Output5-6	\%IB78	USINT	$2 \# 00000001$
4		Bit0	\%IX78.0	BOOL	TRUE
\cdots		Bit1	\%IX78.1	BOOL	FALSE
\cdots		Bit2	\%IX78.2	BOOL	FALSE
- 4		Bit3	\%IX78.3	BOOL	FALSE
\cdots		Bit4	\%IX78.4	BOOL	FALSE
-40		Bit5	\%IX78.5	BOOL	FALSE
\cdots		Bit6	\%IX78.6	BOOL	FALSE
\cdots		Bit7	\%IX78.7	BOOL	FALSE
+ ${ }^{\text {棌 }}$		Status Cutrut $7-\mathrm{R}$	\%TR79	IISINT	2\#กกกกกกกกก

DIAGNOSIS TEMP \& VOLTAGE

Further diagnostic data like e.g. the temperature of the module or the bus voltage may be read out. For this the index 5002 must be activated.

Afterwards the voltage or the module temperature can be read back in the variable VBAT or TEMP.

The voltage is displayed decimally with a resolution of 0.1 V .
The temperature has the resolution $-100^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}$ which is displayed in $0-4000$ bit (factor 10). For the display of the temperature in this value must still be converted from driving unit to Celsius. E.g. ($1815 / 10$) - 100) $=81,5^{\circ} \mathrm{F}-32 \times 5 / 9=27,5^{\circ} \mathrm{C}$

vu	ıum<vul.ıu*vv	vuirivil_s	10דтד	\bigcirc	-	-
61	16\#2004:16\#01	Port_1A	16*55	8	\square	\square
62	16\#1809:16\#05	Event Timer	16\#FF	16	\square	\square
63	16\#5003:16\#00	Highest sub-index supported	$16=10$	8	\square	\square
64	16\#5001:16=00	Highest sub-index supported	16*8	8	\square	\square
65	$16 \# 5002 \cdot 16=00$	Hiahest sub-index sumorted	16 ± 5	8	\square	\square

+ * *		Power	\%IB80	USINT	20
± 4		Save_Counter	\%IB81	USINT	0
$\pm{ }^{4}$ D3VBAT	*	VBAT	\%W41	UINT	241
+ ${ }^{\text {a }}$ D3Temp	*	TEMP	\%IW42	UINT	1815
+ ${ }^{\text {a }}$		CNFG1	\%IW43	UINT	3
± 4		CNFG2	\%[W44	UINT	6
+ x_{0}		Port_1A	\%WW45	UINT	0
± 4		Port_1B	\%WW6	UINT	0
+ ${ }^{4}$		Port_2A	\%IW47	UINT	0
± 4		Port_2B	\%IW48	UINT	0
+ ${ }^{4}$		Port_3A	\%WW49	UINT	0
+ ${ }^{+0}$		Port_38	\%[W50	UINT	0
\pm		Port_4A	\%W551	UINT	0

If no value is displayed, the index 1805:5 must be written with "C0". This SDO takes care of the cyclic exchange of the signals

DIAGNOSIS OUTPUT VOLTAGE P1 / P2 / P3 / P4

In addition, the voltage supply of the outputs can be queried. Index $\mathbf{5 0 0 1}$ must be activated for this purpose.

Subsequently, the status of the individual output voltage supply circuits P1 to P4 can be queried in the Power variable.

Bit $0 / 1=$ Port 4
Bit $2 / 3=$ Port 3
Bit $4 / 5=$ Port 2
Bit $6 / 7=$ Port 1

vo	IuTcuvi.iumus	voirivil_u	10ッדT	\bigcirc	ㄴ	-
61	16\#2004:16 001	Port_1A	$16 \# 55$	8	\square	\square
62	16\#1809:16\#05	Event Timer	16\#FF	16	\square	\square
63	16\#5003:16 \#00	Highest sub-index supported	16\#10	8	\square	\square
64	16\#5001:16\#00	Highest sub-index supported	$16 \# 8$	8	\square	\square
65	16\#5002:16\#00	Highest sub-index supported	16\#5	8	\square	\square
\leqslant						

i In the example, only two of the four actuator circuits are supplied with voltage

If no value is displayed, the index 1805:5 must be written with "C0". This SDO takes care of the cyclic exchange of the signals

Application solutions \& products for simple, decentralized and high-quality machine installation

Mobile automation, plugged in - what else!

