











### HANDBUCH



CANopen Feldbusmodul 12 IN | 14 OUT Artikelnummer: DP-81000-1-200

### SERVICE UND SUPPORT

#### Vertrieb

Unsere Vertriebsmitarbeiter im Innen- und Außendienst sowie unsere Techniker unterstützen Sie gern jederzeit.

#### Support

Bei allen Fragen zur Installation und zur Inbetriebnahme helfen Ihnen die Mitarbeiter unsere Support Abteilung. Sie unterstützen Sie beispielsweise bei Problemen im Zusammenspiel von Produkten unterschiedlicher Hersteller für Hard- und Software. Dabei stehen zahlreiche Support-Tools und Messmöglichkeiten für Feldbussysteme sowie für EMV-Einflüsse zur Verfügung. Rufen Sie uns unter +49 (0) 7191 904 369-10 an oder senden Sie eine E-Mail an: support@data-panel.eu

#### Service-Adressen

Die Data Panel GmbH legt Wert auf Nähe, national und auf der ganzen Welt.

### EUROPA

 Data Panel GmbH

 ⑦Fon +49 7191 904 369-10

 ■Fax +49 7191 904 369-99

 Email info@data-panel.eu

 www.data-panel.eu

### INTERNATIONAL

Murrelektronik GmbH Finden Sie Ihren lokalen Ansprechpartner unter: https://www.murrelektronik.com/de/kontakt/murrelektronik-weltweit/



HINWEIS Originaldokument

Dieses Dokument wurde von der Data Panel GmbH mit der gebotenen Sorgfalt und basierend auf dem ihr bekannten Stand der Technik erstellt. Änderungen und technische Weiterentwicklungen an unseren Produkten werden nicht automatisch in einem überarbeiteten Dokument zur Verfügung gestellt. Data Panel übernimmt keine Haftung und Verantwortung für inhaltliche oder formale Fehler, fehlende Aktualisierungen sowie daraus eventuell entstehende Schäden oder Nachteile.



#### STATUS DES DOKUMENTS

Handbuch xtremeBLOCK MIO1214 Handbuchnummer DP-81000-1-200 Sprache DE Version 2.0 Stand 26.01.2023 Autor <u>info@data-panel.eu</u>



#### KONTAKT

Data Panel GmbH Blumenstraße 22/1 71522 Backnang Germany ⑦Fon +49 7191 904 369-10 ■Fax +49 7191 904 369-99 info@data-panel.eu www.data-panel.eu

### INHALT

| 1 | Einle | leitung                                                   | 5  |
|---|-------|-----------------------------------------------------------|----|
|   | 1.1   | Informationen zum Dokument                                | 5  |
|   | 1.2   | Darstellungskonventionen                                  | 5  |
| 2 | Sich  | herheit                                                   | 6  |
|   | 2.1   | Allgemein                                                 | 6  |
|   | 2.2   | Verwendungszweck                                          | 6  |
|   |       | 2.2.1 Bestimmungsgemäße Verwendung                        | 6  |
|   |       | 2.2.2 Nicht bestimmungsgemäße Verwendung                  | 6  |
|   | 2.3   | Verwendete Warnhinweise                                   | 6  |
|   | 2.4   | Sicherheitsgerichtetes Abschalten des xtremeBLOCK MIO1214 | 8  |
| 3 | Prod  | oduktbeschreibung                                         |    |
|   | 3.1   | Aufbau                                                    |    |
|   | 3.2   | Merkmale                                                  |    |
|   | 3.3   | Diagnosemöglichkeiten über die LEDs                       | 11 |
|   | 3.4   | Typenschild                                               |    |
|   | 3.5   | Lieferumfang                                              | 13 |
| 4 | Tech  | chnische Daten                                            |    |
|   | 4.1   | Abmessungen                                               |    |
|   | 4.2   | Mechanische Eigenschaften                                 |    |
|   | 4.3   | Elektrische Eigenschaften                                 | 15 |
|   | 4.4   | Umweltbedingungen                                         |    |
|   | 4.5   | EMV-Werte                                                 |    |
|   | 4.6   | Ausgänge                                                  | 17 |
|   |       | 4.6.1 Stromdiagnose an den Ausgängen                      |    |
|   |       | 4.6.2 Überstromabschaltung an den Ausgängen               |    |
|   | 4.7   | Eingänge                                                  |    |
| 5 | Mon   | ntage                                                     |    |
|   | 5.1   | Anforderungen an Einbauort und Montagefläche              |    |
|   | 5.2   | Einbaulagen                                               |    |
|   | 5.3   | Erweiterungsmodul montieren                               |    |
| 6 | Elek  | ktrischer Anschluss                                       |    |
|   | 6.1   | Pinbelegung                                               |    |
|   |       | 6.1.1 4-polige Deutsch-Anschlüsse                         |    |
|   | 6.2   | 2-Draht-Sensoren anschließen                              |    |
|   | 6.3   | 3-Draht-Sensoren anschließen                              |    |

| 7  | Iden   | tifikatio                     | on und Konfiguration                                           | 35 |  |  |
|----|--------|-------------------------------|----------------------------------------------------------------|----|--|--|
|    | 7.1    | Identif                       | ikation                                                        | 35 |  |  |
|    |        | 7.1.1                         | Geräteinformationen                                            | 35 |  |  |
|    |        | 7.1.2                         | Elektronisches Typenschild EDS                                 | 36 |  |  |
|    | 7.2    | Betriel                       | ossystem                                                       | 36 |  |  |
|    |        | 7.2.1                         | Betriebssystemupdate des Erweiterungsmoduls                    | 37 |  |  |
| 8  | Para   | metrier                       | ung                                                            |    |  |  |
|    | 8.1    | Konze                         | pt und Ansteuerung                                             |    |  |  |
|    |        | 8.1.1                         | Konfigurationsmöglichkeiten der Anschlüsse                     | 39 |  |  |
|    |        | 8.1.2                         | I/O-Ports und SDO-Abbild                                       | 40 |  |  |
|    |        | 8.1.3                         | Übersicht – I/O-Interfaces                                     | 42 |  |  |
|    |        | 8.1.4                         | Parameter, Werte und Status                                    | 45 |  |  |
|    | 8.2    | Node-                         | ID einstellen                                                  | 48 |  |  |
|    | 8.3    | Geräte                        | ediagnose                                                      | 49 |  |  |
|    | 8.4    | Einste                        | llungen permanent speichern und auf Default-Werte zurücksetzen | 50 |  |  |
|    | 8.5    | Syster                        | nparameter                                                     | 51 |  |  |
|    | 8.6    | Mappi                         | ng von Prozessdatenobjekten (PDOs)                             | 52 |  |  |
|    |        | 8.6.1                         | RPDO-Kommunikationsparameter                                   | 52 |  |  |
|    |        | 8.6.2                         | TPDO-Kommunikationsparameter                                   | 53 |  |  |
|    |        | 8.6.3                         | Mapping-Tabellen                                               | 53 |  |  |
|    |        | 8.6.4                         | Mapping von Digitalwerten                                      | 55 |  |  |
|    |        | 8.6.5                         | Mapping von Analogwerten                                       | 56 |  |  |
|    |        | 8.6.6                         | Eingangswerte eines Interfaces via TPDO senden                 | 57 |  |  |
|    | 8.7    | Frequ                         | enzmessung an den digitalen Eingängen                          | 59 |  |  |
|    | 8.8    | Erfassen von Encoder-Signalen |                                                                |    |  |  |
|    | 8.9    | NMT-Kommandos                 |                                                                |    |  |  |
|    | 8.10   | Fehler                        | behandlung                                                     | 61 |  |  |
|    |        | 8.10.1                        | Heartbeat                                                      | 63 |  |  |
|    | 8.11   | Strom                         | regelung mit PID-Regler                                        | 64 |  |  |
|    |        | 8.11.1                        | Testszenario                                                   | 64 |  |  |
|    |        | 8.11.2                        | Strommessung an den PWMi_H3_X-Ausgängen                        | 67 |  |  |
|    | 8.12   | Dither                        | -Technik zur Ansteuerung von Hydraulikventilen                 | 67 |  |  |
| 9  | Insta  | ndhalt                        | ung                                                            | 69 |  |  |
|    | 9.1    | Wartu                         | ng, Instandsetzung und Entsorgung                              | 69 |  |  |
|    | 9.2    | Lageru                        | ung und Transport                                              | 69 |  |  |
| 10 | ) Serv | ice                           |                                                                | 70 |  |  |
|    | 10.1   | Kunde                         | ndienst                                                        | 70 |  |  |
| 11 | Ersa   | tzteile                       | und Zubehör                                                    |    |  |  |
|    | 11.1   | Zubeh                         | ör                                                             |    |  |  |
|    |        |                               |                                                                |    |  |  |

### 1 EINLEITUNG

### **1.1 Informationen zum Dokument**

Dieses Dokument ist Teil des Produkts und muss vor dem Einsatz des Geräts gelesen und verstanden werden. Es enthält wichtige und sicherheitsrelevante Informationen, um das Produkt sachgerecht und bestimmungsgemäß zu betreiben. Zielgruppen Dieses Dokument richtet sich an Fachpersonal. Das Gerät darf nur durch fachkundiges und ausgebildetes Personal in Betrieb genommen werden. Der sichere Umgang mit dem Gerät muss in jeder Produktlebensphase gewährleistet sein. Fehlende oder unzureichende Fach- und Dokumentenkenntnisse führen zum Verlust jeglicher Haftungsansprüche. Verfügbarkeit von Stellen Sie die Verfügbarkeit dieser Informationen in Produktnähe während der Informationen gesamten Einsatzdauer sicher. Informieren Sie sich im Downloadbereich unserer Homepage über Änderungen und Aktualität des Dokuments. Das Dokument unterliegt keinem automatischen Änderungsdienst.

Folgende Informationsprodukte ergänzen dieses Dokument:

- Versionsupdates
   Informationen zu Änderungen der Softwareprodukte sowie des Betriebssystems Ihres Moduls.
- QuickStartGuide Codesys
- Beispieldateien f
  ür EPLAN und PCAN

### 1.2 Darstellungskonventionen

Unterschiedliche Formatierungen erleichtern es, Informationen zu finden und einzuordnen. Im Folgenden das Beispiel einer Schritt-für-Schritt-Anweisung:

- Dieses Zeichen weist auf eine Voraussetzung hin, die vor dem Ausführen der nachfolgenden Handlung erfüllt sein muss.
- Dieses Zeichen oder eine Nummerierung zu Beginn eines Absatzes markiert eine Handlungsanweisung, die vom Benutzer ausgeführt werden muss. Arbeiten Sie Handlungsanweisungen der Reihe nach ab.
- ▷ Der Pfeil nach Handlungsanweisungen zeigt Reaktionen oder Ergebnisse dieser Handlungen auf.

## INFO Weiterführende Informationen und praktische Tipps In der Info-Box finden Sie weiterführende Informationen und praktische Tipps zu Ihrem Produkt.

### 2 SICHERHEIT

### 2.1 Allgemein

Das Produkt entspricht beim Inverkehrbringen dem aktuellen Stand von Wissenschaft und Technik.

Neben der Betriebsanleitung gelten für den Betrieb des Produkts die Gesetze, Regeln und Richtlinien des Betreiberlandes bzw. der EU. Der Betreiber ist für die Einhaltung der einschlägigen Unfallverhütungsvorschriften und allgemein anerkannten sicherheitstechnischen Regeln verantwortlich.

### 2.2 Verwendungszweck

### 2.2.1 Bestimmungsgemäße Verwendung

Das Gerät erweitert eine Steuerung um multifunktionale Ein- und Ausgänge.

Betreiben Sie das Gerät nur gemäß den Angaben der bestimmungsgemäßen Verwendung und innerhalb der angegebenen technischen Daten. Die bestimmungsgemäße Verwendung beinhaltet das Vorgehen gemäß dieser Anleitung.

Das Gerät fällt aufgrund seiner geringen Betriebsspannung unter die Kategorie Safety Extra Low Voltage und somit nicht unter die EU-Niederspannungsrichtlinie. Das Gerät darf nur aus einer SELV-Quelle betrieben werden.

### 2.2.2 Nicht bestimmungsgemäße Verwendung

Verwenden Sie das Gerät nicht in technischen Systemen, für die eine hohe Ausfallsicherheit vorgeschrieben ist.

**Maschinenrichtlinie** Das Gerät ist kein Sicherheitsbauteil nach der Maschinenrichtlinie 2006/42/EG. Die Verwendung im Sinne des Personenschutzes ist nicht bestimmungsgemäß und unzulässig.

### 2.3 Verwendete Warnhinweise

### **▲ GEFAHR**



### **Hohes Risiko**

Weist auf eine unmittelbar gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tod oder zu schweren Verletzungen führt.

### 



### Mittleres Risiko

Weist auf eine möglicherweise gefährliche Situation hin, die, wenn sie nicht gemieden wird, zum Tod oder zu schweren Verletzungen führen kann.

SELV

### **⚠ VORSICHT**

### **Geringes Risiko**

Weist auf eine potentiell gefährliche Situation hin, die, wenn sie nicht vermieden wird, zu geringfügiger oder mäßiger Verletzung führen könnte.

### HINWEIS



### Sachschäden

Weist auf eine Situation hin, die, wenn sie nicht vermieden wird, zu Sachschaden führen könnte.

### 2.4 Sicherheitsgerichtetes Abschalten des xtremeBLOCK MIO1214

Der xtremeBLOCK MIO1214 selbst wurde **nicht** funktional sicher entwickelt. Mit einer externen Abschaltung der Aktor-Versorgungspannung (VBAT\_PWR) über ein Sicherheitsschaltgerät ist es möglich, einen Performance Level b nach ISO 13849 zu erreichen.

### **▲ VORSICHT**



### Sichere Abschaltung außer Funktion gesetzt

Durch einen Einzelfehler kann die sichere Abschaltung außer Funktion gesetzt werden.

Der maximal erreichbare Performance Level nach ISO 13849 ist b.

 Beachten Sie die Ma
ßnahmen zum Erreichen des Performance Levels b nach ISO 13849.

### Erforderliche Maßnahmen zum Erreichen des Performance Levels b nach ISO 13849

Beachten Sie folgende Maßnahmen, um den Performance Level b zu erreichen:

- Beachten Sie den MTTF-Wert des xtremeBLOCK MIO1214 (87 Jahre).
- Definieren Sie applikationsseitig, ob eine ein- oder zweikanalige Ansteuerung, ein manueller oder automatischer Start oder eine Applikation mit oder ohne Querschlusserkennung notwendig sind.
- Nutzen Sie ein Sicherheitsschaltgerät, das mindestens den Performance Level b erfüllt.
- Nutzen Sie ein Sicherheitsschaltgerät, dessen Kontakte für die Strombelastung des xtremeBLOCK MIO1214 ausgelegt sind.
- Verdrahten Sie das Sicherheitsschaltgerät nach den Vorgaben der zugehörigen Anleitung.
- Sichern Sie die max. Strombelastbarkeit durch vorgeschaltete Überstromeinrichtungen ab.
- Um die Aktor-Versorgungsspannung extern abzuschalten, schalten Sie immer beide Pins X2:1 und X2:2 ab.
- Validieren Sie die Funktionalität der Sicherheitsfunktion bei der Erstinbetriebnahme und dokumentieren Sie das Ergebnis.
- Überprüfen Sie zyklisch (z. B. einmal jährlich) die korrekte Funktion der Sicherheitsfunktion und dokumentieren Sie das Ergebnis.



Abb. 1: Verdrahtungsbeispiel Sicherheitsschaltgerät

| Pin  | Signal   |
|------|----------|
| X2:1 | VBAT_PWR |
| X2:2 | VBAT_PWR |
| X2:3 | GND_PWR  |
| X2:4 | GND_PWR  |

Tab. 1: Anschluss X2 – VBAT\_IN

### **3 PRODUKTBESCHREIBUNG**

Das Erweiterungsmodul xtremeBLOCK MIO1214 ist ein universeller dezentraler Baustein für mobile Arbeitsmaschinen. Mit seiner I/O-Konfiguration kann es nahezu alle dezentralen Aufgaben übernehmen.

### 3.1 Aufbau



### Abb. 2: Aufbau

| 1 | Befestigungsösen              |
|---|-------------------------------|
| 2 | Fehler- und Status-LEDs       |
| 3 | Vierpolige Deutsch-Anschlüsse |

### 3.2 Merkmale

- 1 CAN-Anschluss mit optionalem Abschlusswiderstand
- Kommunikation über DS401-CANopen-Protokoll
- 8 analoge Eingänge zur Strom- oder Spannungsmessung
- 4 digitale Eingänge zur Verwendung als Digital-, Frequenz-, Periodenzeitoder Zählereingang
- 4 digitale Ausgänge mit Stromüberwachung. Je Kanal mit maximal 3 A belastbar. Insgesamt darf der Summenstrom maximal 6 A betragen. Alternativ ist eine Verwendung als digitaler Eingang möglich.
- 6 PWM-Ausgänge bis 7 A mit Stromüberwachung. Alternativ ist eine Verwendung als digitaler Eingang möglich.

- 4 PWM-Ausgänge bis 3 A mit genauer Strommessung und PID-Stromregelung. Alternativ ist eine Verwendung als digitaler Eingang möglich.
- 3 Ausgänge mit überwachten Versorgungsspannungen für Sensoren (Batteriespannung)
- Getrennte Anschlüsse für Logik- und Ausgangstreiberversorgung
- Gesamtstromausgabe bis zu 26 A

### 3.3 Diagnosemöglichkeiten über die LEDs

Der Knoten verfügt über 2 Status-LEDs (rot und grün) zur Anzeige von diversen Zuständen und Fehlern sowie über 30 orange LEDs, die den Status der einzelnen Anschlüsse anzeigen.



Abb. 3: LED-Anzeige

Blinkzyklus der roten und grünen LED

| Farbe | Blinkz       | yklus  | Beschreibung                                                                |
|-------|--------------|--------|-----------------------------------------------------------------------------|
| Rot   | Permanent an |        | <ul> <li>Betriebsspannung liegt an (VBAT_ECU).</li> </ul>                   |
| NOL   |              |        | <ul> <li>Der Bootloader wird nicht ausgeführt.</li> </ul>                   |
| Pot   | An           | 200 ms | <ul> <li>Der Bootloader wird ausgeführt.</li> </ul>                         |
| NOL   | Aus          | 200 ms | <ul> <li>Das Gerät hat keine Firmware.</li> </ul>                           |
|       | An           | 400 ms | <ul> <li>Der Startvorgang wurde fehlerfrei abge-</li> </ul>                 |
| Rot   |              |        | schlossen.                                                                  |
|       | Aus          | 400 ms | <ul> <li>Das Gerät befindet sich im Zustand<br/>Stopped.</li> </ul>         |
|       | An           | 200 ms | Der Startvorgang wurde fehlerfrei abge-                                     |
| Grün  |              |        | schlossen.                                                                  |
| Giun  | Aus          | 200 ms | <ul> <li>Das Gerät befindet sich im Zustand<br/>Pre-Operational.</li> </ul> |
|       | An           | 200 ms | <ul> <li>Der Startvorgang wurde fehlerfrei abge-</li> </ul>                 |
| Grün  |              |        | schlossen.                                                                  |
|       | Aus          | 600 ms | <ul> <li>Das Gerät befindet sich im Zustand<br/>Operational.</li> </ul>     |
|       | 3x           |        | <ul> <li>Der Startvorgang wurde fehlerfrei abge-</li> </ul>                 |
| Grün  | An/          | 200 ms | schlossen.                                                                  |
|       | Aus          |        | Das Gerät befindet sich im Kalibriermo-                                     |
|       | Pause        | 400 ms | dus.                                                                        |

| Farbe | Blinkz           | yklus  | Beschreibung                                                                                           |  |
|-------|------------------|--------|--------------------------------------------------------------------------------------------------------|--|
| Pot   | An               | 200 ms | <ul> <li>Das Gerät befindet sich im Zustand</li> </ul>                                                 |  |
| NUL   | Aus              | 400 ms | Bus-Off.                                                                                               |  |
| Crüp  | An               | 200 ms | Eine Buskommunikation ist nicht möglich.                                                               |  |
| Giun  | Aus              | 400 ms | <ul> <li>Es liegt ein Verdrahtungsfehler vor.</li> </ul>                                               |  |
| Rot   | 3x<br>An/<br>Aus | 200 ms | Messwerte befinden sich außerhalb der<br>spezifizierten Bereiche. Folgende Fehler<br>können vorliegen: |  |
|       | An               | 400 ms |                                                                                                        |  |
| Grün  | Aus              | 400 ms | Die Temperatur der Platine ist zu noch.                                                                |  |
|       | Aus              | 200 ms | Die Temperatur der CPU ist zu hoch.                                                                    |  |

### Blinkzyklus der orangen LEDs

| Farbe     | Blinkzyklus   |        | Beschreibung                                                                                           |  |
|-----------|---------------|--------|--------------------------------------------------------------------------------------------------------|--|
|           | Permanent an  |        | I/O-Signal aktiv                                                                                       |  |
|           |               |        | <ul> <li>Stromeingang: Strom liegt an</li> </ul>                                                       |  |
|           |               |        | <ul> <li>Spannungseingang: Spannung liegt an</li> </ul>                                                |  |
| Orange    |               |        | PNP-Eingang: H-Level                                                                                   |  |
|           |               |        | NPN-Eingang: L-Level                                                                                   |  |
|           |               |        | PWM-Ausgang: Tastverhältnis > 0 %                                                                      |  |
|           |               |        | <ul> <li>Digitaler Ausgang: H-Level</li> </ul>                                                         |  |
|           |               |        | Kein I/O-Signal aktiv                                                                                  |  |
|           | Permanent aus |        | <ul> <li>Stromeingang: Kein Strom liegt an</li> </ul>                                                  |  |
| 0.000.000 |               |        | <ul> <li>Spannungseingang: Keine Spannung liegt<br/>an</li> </ul>                                      |  |
| Orange    |               |        | PNP-Eingang: L-Level                                                                                   |  |
|           |               |        | NPN-Eingang: H-Level                                                                                   |  |
|           |               |        | PWM-Ausgang: Tastverhältnis = 0 %                                                                      |  |
|           |               |        | <ul> <li>Digitaler Ausgang: L-Level</li> </ul>                                                         |  |
|           |               |        | I/O-Fehler:                                                                                            |  |
| Orange    | An/<br>Aus    | 200 ms | ERROR<br>CONFIG<br>OVERVOLTAGE<br>OVERCURRENT<br>SUPPLY_FAULT<br>VEXT_SEN<br>OPEN_CIRCUIT<br>CC_UNLOCK |  |

### LED-Fehler erkennen

In der Einschaltphase (Bootup) leuchten alle orangen LEDs für 2 Sekunden auf und sind anschließend eine Sekunde aus. Dies ermöglicht, Funktionsfehler einzelner LEDs zu erkennen.

### 3.4 Typenschild



### Abb. 4: Typenschild 1

| 1 | Firmenlogo       |
|---|------------------|
| 2 | Zulassungsnummer |
| 3 | Prüfzeichen      |
| 4 | Typenschlüssel   |



### Abb. 5: Typenschild 2

| 1 | Artikelnummer     |
|---|-------------------|
| 2 | Datamatrix-Code   |
| 3 | Seriennummer      |
| 4 | Hardware-Revision |

### 3.5 Lieferumfang

| Lieferumfang                                  | Artikelnummer  | Stückzahl |
|-----------------------------------------------|----------------|-----------|
| xtremeBLOCK MIO1214 12 IN   14 OUT<br>CANopen | DP-81000-1-200 | 1         |
| Installationsanleitung                        | -              | 1         |

### **4** TECHNISCHE DATEN

Dieses Kapitel enthält die elektrischen und mechanischen Daten sowie die Betriebsdaten des Geräts xtremeBLOCK MIO1214.

### 4.1 Abmessungen



#### Abb. 6: Abmessungen in mm

(i) INFO

### **CAD-Daten**

CAD-Daten des Geräts finden Sie im Download-Bereich unserer Homepage.

### 4.2 Mechanische Eigenschaften

| Parameter            | Beschreibung                                   | Normen      |  |
|----------------------|------------------------------------------------|-------------|--|
| Gewicht              | 800 g                                          |             |  |
| Gehäuseeigenschaften |                                                |             |  |
| Material             | Polyamid                                       |             |  |
| Gehäusepotenzial     | Isoliert                                       |             |  |
| Schwingfestigkeit    | 10 Hz 150 Hz, 6 h                              | ISO 16750-3 |  |
| Schockfestigkeit     |                                                |             |  |
| Schockart            | Halbsinuswelle                                 | ISO 16750-3 |  |
| Stärke und Dauer     | 50 g für 11 ms                                 |             |  |
| Anzahl und Richtung  | 10 Schocks in alle 3 Richtungen der Raumachsen |             |  |
| Freier Fall          |                                                |             |  |
| Fallhöhe             | Aus 1 m Höhe auf festen<br>Grund               | ISO 16750-3 |  |

 Tab. 2: Mechanische Eigenschaften

### 4.3 Elektrische Eigenschaften

### Versorgung der

Ausgangstreiber

| Parameter        | Beschreibung                                                                                                                                   |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Abkürzung        | VBAT_PWR                                                                                                                                       |
| Gesamtstrom      | Max. 26 A                                                                                                                                      |
| Betriebsspannung | DC 8 V 32 V                                                                                                                                    |
| Verpolschutz     | Es besteht Kurzschlussgefahr beim Verpolen. Si-<br>chern Sie die Schaltung mit einer externen 30-A-Si-<br>cherung ab (alternativ mit 2x 15 A). |
| Spannungsschutz  | +36 V für 1 h bei T <sub>max</sub> -20 °C, Funktionsstatus C                                                                                   |

Tab. 3: Versorgung der Ausgangstreiber

Parameter Beschreibung Versorgung ECU VBAT ECU Abkürzung DC 8 V...32 V Betriebsspannung Verpolschutz Max. 32 V Es besteht Kurzschlussgefahr beim Verpolen. Sichern Sie die Schaltung mit einer externen 2-A-Sicherung ab. Stromaufnahme Bei 12 V ca. 49 mA + Summenstrom an VEXT\_SEN Bei 24 V ca. 34 mA + Summenstrom an VEXT\_SEN

Tab. 4: Versorgung der ECU

#### Massebezug

| Pin     | Verwendungszweck                     |
|---------|--------------------------------------|
| GND_PWR | Massebezug für VBAT_PWR und VBAT_ECU |
| GND_SEN | Massebezug für VEXT_SEN              |
|         |                                      |

 Tab. 5: Massebezug

### 4.4 Umweltbedingungen

| Parameter                 | Beschreibung                                                                                                                                             | Normen      |  |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|
| Betriebstemperatur        | -40 °C +85 °C                                                                                                                                            | ISO 16750-4 |  |
| Lagertemperatur           | -40 °C +85 °C                                                                                                                                            |             |  |
| Relative Luftfeuchtigkeit | 5 % 95 %                                                                                                                                                 |             |  |
| Witterungsbeständigkeit   | Das Gerät ist für den Einsatz unter allen Witterungs-<br>bedingungen bestimmt und für den Außeneinsatz ge-<br>eignet.                                    |             |  |
| Salzwasserbeständigkeit   | Das Gerät ist nicht für den Hochseebetrieb ausge-<br>legt.                                                                                               |             |  |
| Maximale Aufstellhöhe     | 2000 m                                                                                                                                                   |             |  |
| über Normalnull (NN)      | Die maximale Aufstellhöhe ist nur im Zusammenhang<br>mit der sicheren Abschaltung relevant (siehe Sicher-<br>heitsgerichtetes Abschalten des xtremeBLOCK |             |  |
|                           | MIO1214 [▶ 8]).                                                                                                                                          |             |  |
| Verschmutzungsgrad        | Stufe 2                                                                                                                                                  |             |  |
| Schutzart                 |                                                                                                                                                          |             |  |
| Ohne Gegenstecker         | IP65                                                                                                                                                     |             |  |
| Mit Gegenstecker          | IP69K                                                                                                                                                    |             |  |

Tab. 6: Umweltbedingungen

### 4.5 EMV-Werte

Das Gerät verfügt über eine E1-Zulassung nach ECE R10 Rev. 5 und eine CE-Konformität nach ISO 14982 sowie ISO 13766-2.

| Im | nulse | ISO | 7637-2 |
|----|-------|-----|--------|
|    | puise | 100 | 1031-2 |

| Testimpuls | Werte  | Funktionsklasse |
|------------|--------|-----------------|
| 1          | -450 V | С               |
| 2a         | +37 V  | A               |
| 2b         | +20 V  | C               |
| 3a         | -150 V | A               |
| 3b         | +150 V | A               |
|            |        |                 |

Tab. 7: Impulse ISO 7637-2

Impulse ISO 16750-2

| Testimpuls | Werte                | Funktionsklasse  |
|------------|----------------------|------------------|
| 4          | Ua1: -12 V / 50 ms   | C (24-V-Systeme, |
|            | Ua2: -5 V / 500 ms   | ECE R10)         |
| 4          | Ua1: -6 V / 50 ms    | C (12-V-Systeme, |
|            | Ua2: -2,5 V / 500 ms | ECE R10)         |
| 5a         | Load Dump            | A                |
|            | 123 V / 2 Ω / 350 ms |                  |

### Tab. 8: Impulse ISO 16750-2

Einstrahlung ISO 11452

| Parameter    | Werte               | Funktionsklasse |
|--------------|---------------------|-----------------|
| Einstrahlung | 200 MHz 2 GHz 30 V/ | A               |
|              | m                   |                 |
|              |                     |                 |

Tab. 9: Einstrahlung ISO 11452

| Störstrom-                 | Parameter                        | Werte                   | Funktionsklasse       |
|----------------------------|----------------------------------|-------------------------|-----------------------|
| einspeisung<br>ISO 11452-4 | Störstromeinspeisung<br>BIC-Test | 20 MHz 400 MHz<br>60 mA | A                     |
|                            | Tab. 10: Störstromeinspeisun     | g ISO 11452-4           |                       |
| Abstrahlung                | Parameter                        | Werte                   |                       |
| CISPR 25                   | Narrowband-Emission              | 30 MHz 1.000 MHz        | Min. 1 dB unter Limit |
|                            | Wideband-Emission                | 30 MHz 1.000 MHz        | Min. 1 dB unter Limit |
|                            | Tab. 11: Abstrahlung CISPR       | 25                      | ·                     |
| ESD EN 61000-4-2           | Parameter                        | Werte                   | Funktionsklasse       |
|                            | Kontaktentladung                 | ±4 kV                   | A                     |
|                            | Luftendladung                    | ±8 kV                   | A                     |
|                            | Tab. 12: ESD EN 61000-4-2        |                         | ·                     |
|                            |                                  |                         |                       |
| 4 6                        | Ausgänge                         |                         |                       |
| т. О                       |                                  |                         |                       |
|                            |                                  |                         |                       |

Die Verwendung der Ausgänge als Eingang wirkt sich immer auf die gesamte Gruppe aus. Es ist nicht möglich, einzelne Ausgänge einer Gruppe als Eingang zu konfigurieren.

| Ausgang PWMi_H3 | Parameter                                       | Beschreibung                                                   |  |  |
|-----------------|-------------------------------------------------|----------------------------------------------------------------|--|--|
|                 | High-Side-PWM-Ausgang mit genauer Stromdiagnose |                                                                |  |  |
|                 | Abkürzung                                       | PWMi_H3                                                        |  |  |
|                 | Anzahl                                          | 4                                                              |  |  |
|                 | Maximalstrom                                    | 3 A je Kanal                                                   |  |  |
|                 | Lastbereich                                     | 0,02 A 3 A je Kanal                                            |  |  |
|                 | Eigenschaften                                   | Kabelbrucherkennung Verträgt induktive Last                    |  |  |
|                 |                                                 | Überstromerkennung, genaue Strommessung                        |  |  |
|                 | Pulsweitenmodulation                            |                                                                |  |  |
|                 | PWM-Frequenz                                    | Max. 1.500 Hz                                                  |  |  |
|                 | Auflösung                                       | 0,1 %                                                          |  |  |
|                 | Dithering-Frequenz                              | 50 Hz 800 Hz                                                   |  |  |
|                 | Dither-Amplitude                                | 0 % 20 %                                                       |  |  |
|                 | Stromregelung                                   | PID-Regler mit konfigurierbaren Regelparametern                |  |  |
|                 | Regelzeit                                       | ≥ 5 ms, einstellbar                                            |  |  |
|                 | Stromdiagnose                                   |                                                                |  |  |
|                 | Auflösung                                       | 12 Bit                                                         |  |  |
|                 | Messbereich                                     | 0,2 A 4 A                                                      |  |  |
|                 | Messgenauigkeit                                 | ±2,5 % des Maximalwertes bezogen auf den Strom-<br>bereich 3 A |  |  |
|                 | Verwendung als Eingang                          |                                                                |  |  |
|                 | NPN- und PNP-Eingang                            | Das Umschalten des Interface auf NPN oder PNP                  |  |  |
|                 |                                                 | wirkt sich auf die gesamte Gruppe PWMi_H3_x<br>aus!            |  |  |
|                 |                                                 | L-Pegel $\leq$ 1,6 V H-Pegel $\geq$ 4,6 V                      |  |  |
|                 | Eingangswiderstand                              | PNP 94 kΩ NPN 10 kΩ                                            |  |  |
|                 |                                                 |                                                                |  |  |

Tab. 13: Ausgänge PWMi\_H3\_1 ... PWMi\_H3\_4

| Ausgang PWM H7 | Parameter                | Beschreibung                                                                                       |                     |
|----------------|--------------------------|----------------------------------------------------------------------------------------------------|---------------------|
| 00 -           | High-Side-PWM-Ausgang    | g mit Stromdiagnose                                                                                |                     |
|                | Abkürzung                | PWM_H7                                                                                             |                     |
|                | Anzahl                   | 6                                                                                                  |                     |
|                | Maximalstrom             | 7 A je Kanal                                                                                       |                     |
|                | Lastbereich              | 0,2 A 7 A je Kanal                                                                                 |                     |
|                | Eigenschaften            | <ul> <li>Kabelbrucherkennung</li> </ul>                                                            |                     |
|                |                          | Verträgt induktive Last                                                                            |                     |
|                |                          | Überstromerkennung                                                                                 |                     |
|                | Stromdiagnose            | Diagnosewert                                                                                       | Messgenauigkeit     |
|                | Bezogen auf den Mess-    | < 0,2 A                                                                                            | ±45 %               |
|                | bereich 7 A              | ≤ 1,5 A                                                                                            | ±35 %               |
|                |                          | > 1,5 A 7 A                                                                                        | ±25 %               |
|                | Pulsweitenmodulation     |                                                                                                    |                     |
|                | PWM-Frequenz             | Min. 5 Hz                                                                                          | Max. 1.500 Hz       |
|                | Auflösung                | 0,1 %                                                                                              |                     |
|                | Dithering-Frequenz       | 25 Hz 800 Hz                                                                                       |                     |
|                | Dither-Amplitude         | 0 % 20 %                                                                                           |                     |
|                | Verwendung als Eingang   | J                                                                                                  |                     |
|                | NPN- und PNP-Eingang     | Das Umschalten des Interface auf NPN oder PN<br>wirkt sich auf die gesamte Gruppe PWM_H7_x<br>aus! |                     |
|                |                          | L-Pegel ≤ 1,6 V                                                                                    | H-Pegel ≥ 4,6 V     |
|                | Eingangswiderstand       | PNP 94 kΩ                                                                                          | NPN 10 kΩ           |
|                | Tab. 14: Ausgänge PWM_H7 | _1 PWM_H7_6                                                                                        |                     |
| Ausgang DO_H3  | Parameter                | Beschreibung                                                                                       |                     |
|                | Digitaler Ausgang mit St | romdiagnose                                                                                        |                     |
|                | Abkürzung                | DO_H3                                                                                              |                     |
|                | Anzahl                   | 4                                                                                                  |                     |
|                | Maximalstrom             | 3 A je Kanal                                                                                       |                     |
|                | Summenstrom              | Max. 6 A für alle 4 DO_H3                                                                          | -Kanäle zusammen    |
|                | Switch Load              | 0,02 A 3 A                                                                                         |                     |
|                | On-Off-Schaltfrequenz    | Max. 50 Hz                                                                                         |                     |
|                | Eigenschaften            | <ul> <li>Kabelbrucherkennung</li> </ul>                                                            |                     |
|                |                          | <ul> <li>Verträgt induktive Last</li> </ul>                                                        |                     |
|                |                          | <ul> <li>Überstromerkennung</li> </ul>                                                             |                     |
|                | Stromdiagnose            | Strom                                                                                              | Messgenauigkeit     |
|                | Bezogen auf den Mess-    | < 0,2 A                                                                                            | ±45 %               |
|                | bereich 3 A              | ≤ 1,5 A                                                                                            | ±35 %               |
|                |                          | > 1,5 A 3 A                                                                                        | ±25 %               |
|                | Verwendung als Eingang   |                                                                                                    |                     |
|                | NPN- und PNP-Eingang     | Das Umschalten des Interface auf NPN oder PNF<br>wirkt sich auf die gesamte Gruppe DO H3 x aus     |                     |
|                |                          | L-Pegel ≤ 1,6 V                                                                                    | <br>H-Pegel ≥ 4,6 V |
|                | Eingangswiderstand       | ΡΝΡ 94 κΩ                                                                                          | NPN 10 kΩ           |

 Tab. 15: Ausgänge DO\_H3\_1 ... DO\_H3\_4

### Sensorausgang VEXT\_SEN

Parameter Beschreibung

Ausgang für die Versorgung von Sensoren:

VBAT\_ECU wird auf VEXT\_SEN über einen Kaltleiter durchgeschleift. Ein Überstrom bzw. Kurzschluss an der Sensorversorgung kann diagnostiziert werden.

Es gibt 3 Kanäle (VEXT\_SEN\_1 ... VEXT\_SEN\_3), die auf mehrere Anschlüsse und Pins [▶ 27] verteilt sind.

| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                   |  |
|---------------------------------------|-----------------------------------|--|
| Abkürzung                             | VEXT_SEN_x                        |  |
| Verteilung                            | ■ VEXT_SEN_1 → X6, X7, X14, X18   |  |
| (VEXT_SEN_x befindet                  | ■ VEXT_SEN_2 → X8, X9, X15, X19   |  |
| Anschlusses).                         | ■ VEXT_SEN_3 → X10, X11, X16, X20 |  |
| Anzahl                                | 3                                 |  |
| Maximalstrom je Kanal                 | Ca.100 mA bei 85 °C               |  |
|                                       | Ca. 200 mA bei 70 °C              |  |
|                                       | Ca. 300 mA bei 55 °C              |  |
|                                       | Ca. 400 mA bei 40 °C              |  |
|                                       | Ca. 500 mA bei 25 °C              |  |

 Tab. 16:
 Sensorausgang VEXT\_SEN

### 4.6.1 Stromdiagnose an den Ausgängen

Die Ausgänge haben unterschiedliche Toleranzen (siehe Ausgänge [> 17]).

Alle Ausgänge werden von Werk aus kalibriert, um eine möglichst hohe Genauigkeit zu erreichen. Für kleine Stromwerte verläuft die Strommessung nicht linear. Die Messung wird deshalb von der Firmware linearisiert:



Abb. 7: Diagramm: Prinzip der Linearisierung

| А | Strom-Wert |   |
|---|------------|---|
| В | ADC-Wert   | ĺ |

- T1 liegt bei 200 mA, darunter wird der Strom als 0 angezeigt.
- T2 liegt bei 500 mA. Von 200 mA bis 500 mA wird der gemessene Stromwert linearisiert.

### 4.6.2 Überstromabschaltung an den Ausgängen

Wenn durch einen Ausgang für 500 ms (Default-Wert) Überstrom fließt, dann wird die Überstromabschaltung aktiv. Dieser Wert kann über den Parameter OVERCURRENT\_TIME verändert werden. Tritt ein Überstromereignis auf, dann schaltet der Ausgang ab und das Überstrom-Bit wird für 10 s gesetzt. Während dieser Zeit kann der Port nicht wieder eingeschaltet werden.

Port wieder einschalten

- ✓ Der xtremeBLOCK MIO1214 befindet sich im Zustand **Operational**.
- ✓ Seit der Abschaltung des Ausgangs sind 10 s vergangen.
- Setzen Sie den Ausgangswert (Digital oder PWM) des betreffenden Ports erneut.

### 4.7 Eingänge

Im Betriebsspannungsbereich sind alle Eingänge spannungsfest und überstromsicher.

### Analoge Eingänge

| Parameter                             | Beschreibung                                                                                                                                                    |                                  |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Analoge Eingänge                      |                                                                                                                                                                 |                                  |
| Abkürzung                             | Abkürzung Al                                                                                                                                                    |                                  |
| Anzahl                                | 8                                                                                                                                                               |                                  |
| Auflösung                             | 12 Bit                                                                                                                                                          |                                  |
| Spannungsmessung                      |                                                                                                                                                                 |                                  |
| Nennmessbereich                       | 0 V 10 V                                                                                                                                                        |                                  |
| Überspannungsmessung                  | 10 V 12 V                                                                                                                                                       |                                  |
| Eingangswiderstand                    | ≥ 35 kΩ                                                                                                                                                         |                                  |
| Maximalspannung                       | +32 V                                                                                                                                                           |                                  |
| Messgenauigkeit                       | ±2 % bezogen auf den Ner                                                                                                                                        | nmessbereich                     |
| Gleitender Mittelwert-Filt            | er                                                                                                                                                              |                                  |
| Bereich der Filtertiefe               | 1 32                                                                                                                                                            | Bei 1 ist keine Filterung aktiv. |
| Messzyklus                            | 1 ms                                                                                                                                                            |                                  |
| Strommessung                          |                                                                                                                                                                 |                                  |
| Messbereich                           | 0 mA 20 mA                                                                                                                                                      |                                  |
| Überstrombereich                      | 21 mA 24 mA                                                                                                                                                     |                                  |
| Bürde                                 | 120 Ω                                                                                                                                                           |                                  |
| Messgenauigkeit                       | ±1,5 % bezogen auf den Strommessbereich 20 mA                                                                                                                   |                                  |
| Verhalten bei Überstro-<br>merkennung | Bei Überstromerkennung wird die Strommessung un-<br>terbrochen. Nach Ende des Überstromereignisses<br>wird die Strommessung selbständig wiederherge-<br>stellt. |                                  |
| Als DI_PNP                            |                                                                                                                                                                 |                                  |
| H-Pegel                               | ≥ 4,6 V                                                                                                                                                         |                                  |
| L-Pegel                               | ≤ 1,6 V                                                                                                                                                         |                                  |
| Eingangsfrequenz                      | Max. 10 Hz                                                                                                                                                      |                                  |
| Eingangswiderstand                    | ≥ 35 kΩ                                                                                                                                                         |                                  |

Tab. 17: Analoge Eingänge

### Digitale Eingänge

Konfigurations-

eingänge

Alle digitalen Eingänge sind PNP-Eingänge. Der digitale Eingang DI\_P\_1 kann auch als NPN-Eingang konfiguriert werden. Alle Ausgänge können mit Einschränkungen auch als einfache digitale NPN- oder PNP-Eingänge verwendet werden.

| Parameter           | Beschreibung                          |
|---------------------|---------------------------------------|
| Beschreibung        | Digitale Eingänge mit Frequenzmessung |
| Abkürzung           | DI_P                                  |
| Anzahl              | 4                                     |
| Pulldown-Widerstand | 5,6 kΩ                                |
| H-Pegel             | ≥ 4,6 V                               |
| L-Pegel             | ≤ 1,6 V                               |
| Eingangsfrequenz    | 0,1 Hz 10 kHz                         |
| Spannungsfestigkeit | Max. +32 V                            |

 Tab. 18: Digitale Eingänge DI\_P\_1 ... DI\_P\_4

Die Konfigurationseingänge sind Tristate-Eingänge und werden zum Einstellen der Node-ID verwendet. Die Basis-Adresse ist einstellbar und hat den Default-Wert 0x30. Die Node-ID kann durch Verbinden der Konfigurationseingänge mit VBAT\_ECU oder GND über einen Offset verschoben werden.

| Parameter    | Beschreibung                                             |      |  |  |
|--------------|----------------------------------------------------------|------|--|--|
| Beschreibung | Konfigurationseingänge zur Konfiguration der Node-<br>ID |      |  |  |
| Abkürzung    | CFG1                                                     | CFG2 |  |  |
| Anzahl       | 2                                                        |      |  |  |

 Tab. 19:
 Konfigurationseingänge CFG1
 CFG2

Weiterführende Informationen finden Sie im Kapitel Node-ID einstellen [▶ 48].

### 5 MONTAGE

### 



Verbrennungsgefahr

Heiße Oberflächen können Verbrennungen verursachen.

- Treffen Sie Schutzma
  ßnahmen gegen versehentliches Ber
  ühren des Ger
  äts.
- Lassen Sie das Gerät einige Zeit abkühlen, bevor Sie Arbeiten am Gerät durchführen.

### HINWEIS



Materialschäden oder Funktionsbeeinträchtigung durch Schweißarbeiten

Schweißarbeiten am Fahrgestell können Materialschäden oder Funktionsbeeinträchtigungen verursachen.

- Trennen Sie vor Schweißarbeiten alle Kontakte des Geräts vom Bordnetz des Fahrzeugs.
- Schützen Sie das Gerät vor Funkenflug und Schweißperlen.
- Berühren Sie das Gerät nicht mit der Schweißelektrode oder Masseklemme.

### HINWEIS



Schmutz und Feuchtigkeit können die elektrischen Verbindungen beeinträchtigen.

- Verschließen Sie nicht benutzte Pins mit Blindstopfen.
- Schützen Sie alle elektrischen Verbindungen durch entsprechende Einzeladerabdichtungen.
- Reinigen Sie die Umgebung der Stecker, bevor Sie den Gegenstecker abziehen.

### HINWEIS



### Funktionsbeeinträchtigung durch Magnete oder Motoren mit Spule

Magnete oder Motoren mit Spule in der Nähe des xtremeBLOCK MIO1214 können die Strommessung der Einund Aus- gänge beeinflussen.

 Achten Sie auf einen ausreichenden Abstand oder eine Abschirmung des xtremeBLOCK MIO1214. Anforderungen an die Montagefläche

### 5.1 Anforderungen an Einbauort und Montagefläche

| Parameter             | Beschreibung                                                                                                                                           |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geeignete Materialien | Keine besonderen Materialansprüche                                                                                                                     |
| Form / Beschaffenheit | Die Auflagefläche muss eben sein.                                                                                                                      |
| Befestigungsösen      | Alle vorhandenen Befestigungsösen müssen ver-<br>schraubt werden. Das Gerät kann direkt am Fahr-<br>zeug oder auf einer Montageplatte montiert werden. |

Tab. 20: Anforderungen an die Montagefläche

### Anforderungen an den Einbauraum

- Ausreichende Luftzirkulation
- Ausreichender Abstand zu Teilen mit großer Hitzeentwicklung
- Das Gerät muss jederzeit für Servicearbeiten zugänglich sein.

### 5.2 Einbaulagen

Der xtremeBLOCK MIO1214 kann in beliebiger Lage eingebaut werden.

Horizontale Einbaulage



### HINWEIS

### Eindringende Feuchtigkeit bei horizontaler Einbaulage

Wenn das Gerät horizontal eingebaut wird, kann Feuchtigkeit über die Buchsen eindringen.

 In der horizontalen Einbaulage müssen alle Jetter-Stecker gesteckt sein.



Abb. 8: Horizontale Einbaulage

### Mehrere xtremeBLOCK MIO1214

Wenn mehrere xtremeBLOCK MIO1214 nebeneinander verbaut werden, dann muss ein Mindestabstand von 16 mm zwischen den einzelnen Geräten eingehalten wer- den.



Abb. 9: Einbaulagen, Angaben in mm

### 5.3 Erweiterungsmodul montieren

Montagematerial

Das Montagematerial ist nicht im Lieferumfang enthalten. Die Jetter AG empfiehlt folgendes Montagematerial:

| Material                              | Eigenschaften                                                                                                                                       |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Schrauben                             | M6                                                                                                                                                  |
| Sicherungsscheiben                    | Sicherungsscheiben werden empfohlen, um vibrati-<br>onsbedingte Lockerungen der Schrauben zu ver-<br>meiden.                                        |
| Kabelfixierung und Zugent-<br>lastung | Eine mechanische Fixierung und Zugentlastung ist<br>notwendig, um vibrationsbedingten Kabelbruch oder<br>eine Überlastung der Stecker zu vermeiden. |

Tab. 21: Montagematerial

Montage

 Befestigen Sie den xtremeBLOCK MIO1214 an allen Befestigungsösen. Das Anzugsmoment beträgt max. 4 Nm.

### 6 ELEKTRISCHER ANSCHLUSS

### 



#### Signalstörung aufgrund fehlerhafter CAN-Verdrahtung

Nicht geschirmte oder verdrillte CAN-Leitungen können Kommunikationsstörungen zur Folge haben. Im Extremfall kann eine Fehlfunktion des Geräts zu Folgeschäden an Personen führen.

 Schließen Sie an beiden Enden des CAN-Busses Abschlusswiderstände von 120 Ω an.

### HINWEIS

Beeinflussung der elektromagnetischen Verträglichkeit

Ungeeignete Ausführung des Kabelbaums kann die elektromagnetische Verträglichkeit beeinflussen.

- Halten Sie die Kabel möglichst kurz.
- Führen Sie Signalleitungen separat von leistungsführenden Leitungen.

### HINWEIS



Rauschen auf nicht verbundenen Analogeingängen

In der Standard-Konfiguration sind beim xtremeBLOCK MIO1214 alle PDOs belegt. Dies kann zu einem Rauschen auf nicht verbundenen Analogeingängen führen.

- Verbinden Sie ungenutzte Analogeingänge mit Masse, um die Buslast zu reduzieren.
- Erhöhen Sie ggf. den Parameter MIN\_DEVIATION.

### HINWEIS



#### Materialschäden oder Funktionsbeeinträchtigung

Ungeeignete Ausführung des Kabelbaums kann zu mechanischer Überbeanspruchung führen.

- Schützen Sie Leitungen vor Abknicken, Verdrehen und Scheuern.
- Montieren Sie Zugentlastungen für die Anschlusskabel.

### HINWEIS

### Überspannung durch fehlende externe Absicherungen

Hohe Spannungswerte können Funktionsbeeinträchtigungen und Produktschäden verursachen.

- Sichern Sie die Spannungseingänge entsprechend den Anforderungen ab.
- Achten Sie auf einen ESD-gerechten Umgang mit dem Gerät.

### HINWEIS



### Störung durch Potentialunterschiede

Potentialunterschiede können zu Störungen führen.

 Verdrahten Sie die Sensoren und die Aktoren inklusive deren Versorgungsleitungen sternförmig, um Potentialunterschieden vorzubeugen.

### 6.1 Pinbelegung

### 6.1.1 4-polige Deutsch-Anschlüsse

Das xtremeBLOCK MIO1214 verfügt über 20 4-polige Deutsch-Anschlüsse.



#### Abb. 10: Anschlüsse

| Anschluss X1 – | Pin     | Signal                  |
|----------------|---------|-------------------------|
| VBAT_OUT       | 1       | NC                      |
|                | 2       | VBAT_PWR                |
|                | 3       | GND_PWR                 |
|                | 4       | GND_PWR                 |
|                | Tab. 22 | Anschluss X1 – VBAT_OUT |
| Anschluss X2 – | Pin     | Signal                  |
| VBAT_IN        | 1       | VBAT_PWR                |
|                | 2       | VBAT_PWR                |
|                | 3       | GND PWR                 |

GND\_PWR Tab. 23: Anschluss X2 - VBAT\_IN

4

| Anschluss X4 –  | Pin      | Signal                       |
|-----------------|----------|------------------------------|
| CAN_IN          | 1        | VBAT_ECU                     |
|                 | 2        | CAN L                        |
|                 | 3        | VBAT ECU in Status BOOT      |
|                 |          | C im Zustand Operational     |
|                 | 4        | CAN H                        |
|                 | Tab. 24: | Anschluss X4 – CAN IN        |
|                 | D:       |                              |
| Anschluss X5 –  | Pin      | Signal                       |
| CAN_OUT         |          |                              |
|                 | 2        |                              |
|                 |          |                              |
|                 | Tab 25   | Anschluss X5 – CAN OUT       |
|                 | 140. 25. |                              |
| Anschluss X6 –  | Pin      |                              |
| AI_1 AI_2       | 1        | VEXI_SEN_1                   |
|                 | 2        |                              |
|                 | 3        | GND_SEN                      |
|                 | 4        |                              |
|                 | Tab. 26  | Anschluss Xo – Al_1 Al_2     |
| Anschluss X7 –  | Pin      | Signal                       |
| AI_3 AI_4       | 1        | VEXT_SEN_1                   |
|                 | 2        | AI_3                         |
|                 | 3        | GND_SEN                      |
|                 | 4        | AI_4                         |
|                 | Tab. 27: | Anschluss X7 – Al_3 … Al_4   |
| Anschluss X8 –  | Pin      | Signal                       |
| AI_5 AI_6       | 1        | VEXT_SEN_2                   |
|                 | 2        | AI_5                         |
|                 | 3        | GND_SEN                      |
|                 | 4        | AI_6                         |
|                 | Tab. 28: | : Anschluss X8 – AI_5 … AI_6 |
| Anschluss X9 –  | Pin      | Signal                       |
| AI_7 AI_8       | 1        | VEXT_SEN_2                   |
|                 | 2        | AI_7                         |
|                 | 3        | GND_SEN                      |
|                 | 4        | AI_8                         |
|                 | Tab. 29: | Anschluss X9 – AI_7 … AI_8   |
| Anschluss X10 – | Pin      | Signal                       |
| DI_P_1 DI_P_2   | 1        | VEXT_SEN_3                   |
|                 | 2        | DI_P_1                       |
|                 | 3        | GND_SEN                      |
|                 | 4        | DI_P_2                       |

4 DI\_P\_2 **Tab. 30:** Anschluss X10 – DI\_P\_1 ... DI\_P\_2

| Anschluss X11 – | Pin     | Signal                                  |
|-----------------|---------|-----------------------------------------|
| DI_P_3 DI_P_4   | 1       | VEXT_SEN_3                              |
|                 | 2       | DI_P_3                                  |
|                 | 3       | GND_SEN                                 |
|                 | 4       | DI_P_4                                  |
|                 | Tab. 31 | : Anschluss X11 – DI_P_3 DI_P_4         |
| Anschluss X12 – | Pin     | Signal                                  |
| CFG             | 1       | VBAT_ECU                                |
|                 | 2       | CFG_1                                   |
|                 | 3       | GND_PWR                                 |
|                 | 4       | CFG_2                                   |
|                 | Tab. 32 | : Anschluss X12 - CFG                   |
| Anschluss X13 – | Pin     | Signal                                  |
| PWM_H7_5        | 1       | VBAT_ECU                                |
|                 | 2       | PWM_H7_5                                |
|                 | 3       | GND_PWR                                 |
|                 | 4       | PWM_H7_5                                |
|                 | Tab. 33 | : Anschluss X13 – PWM_H7_5              |
| Anschluss X14 – | Pin     | Signal                                  |
| PWMi_H3_1       | 1       | VEXT_SEN_1                              |
| PWWI_H3_2       | 2       | PWMi_H3_1                               |
|                 | 3       | GND_PWR                                 |
|                 | 4       | PWMi_H3_2                               |
|                 | Tab. 34 | : Anschluss X14 – PWMi_H3_1 … PWMi_H3_2 |
| Anschluss X15 – | Pin     | Signal                                  |
| DO_H3_1         | 1       | VEXT_SEN_2                              |
| DO_H3_2         | 2       | DO_H3_1                                 |
|                 | 3       | GND_PWR                                 |
|                 | 4       | DO_H3_2                                 |
|                 | Tab. 35 | : Anschluss X15 – DO_H3_1 … DO_H3_2     |
| Anschluss X16 – | Pin     | Signal                                  |
| PWM_H7_3        | 1       | VEXT_SEN_3                              |
|                 | 2       | PWM_H7_3                                |
|                 | 3       | GND_PWR                                 |
|                 | 4       | PWM_H7_3                                |
|                 | Tab. 36 | : Anschluss X16 – PWM_H7_3              |
| Anschluss X17 – | Pin     | Signal                                  |
| PWM_H7_6        | 1       | VBAT_ECU                                |
|                 | 2       | PWM_H7_6                                |
|                 | 3       | GND_PWR                                 |
|                 | 4       | PWM_H7_6                                |

Tab. 37: Anschluss X17 – PWM\_H7\_6

| Anschluss X18 – | Pin      | Signal                                |
|-----------------|----------|---------------------------------------|
| PWMi_H3_3       | 1        | VEXT_SEN_1                            |
| PWMi_H3_4       | 2        | PWMi_H3_3                             |
|                 | 3        | GND_PWR                               |
|                 | 4        | PWMi_H3_4                             |
|                 | Tab. 38: | Anschluss X18 – PWMi_H3_3 … PWMi_H3_4 |
| Anschluss X19 – | Pin      | Signal                                |
| DO_H3_3         | 1        | VEXT_SEN_2                            |
| DO_H3_4         | 2        | DO_H3_3                               |
|                 | 3        | GND_PWR                               |
|                 | 4        | DO_H3_4                               |
|                 | Tab. 39: | Anschluss X19 – DO_H3_3 … DO_H3_4     |
| Anschluss X20 – | Pin      | Signal                                |
| PWM_H7_4        | 1        | VEXT_SEN_3                            |
|                 | 2        | PWM_H7_4                              |
|                 | 3        | GND_PWR                               |
|                 | 4        | PWM_H7_4                              |
|                 | Tab. 40: | Anschluss X20 – PWM_H7_4              |
| Anschluss X21 – | Pin      | Signal                                |
| PWM_H7_1        | 1        | VBAT_ECU                              |
| PWM_H7_2        | 2        | PWM_H7_1                              |
|                 | 3        | GND_PWR                               |
|                 | 4        | PWM_H7_2                              |

Tab. 41: Anschluss X21 – PWM\_H7\_1 ... PWM\_H7\_2

Verwendete Abkürzungen

| Bedeutung                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------|
| Analogeingang für Strom und Spannung                                                                                |
| Konfigurationspin zum Einstellen der CAN-ID                                                                         |
| Digital- und Frequenzeingang                                                                                        |
| Digitaler High-Side-Ausgang                                                                                         |
| Masse für Leistungsausgänge                                                                                         |
| Masse für Sensorversorgung                                                                                          |
| Reservierter Pin, der nicht angeschlossen werden<br>darf. Dichten Sie unbenutzte Pins mit einem Pinstop-<br>fen ab. |
| High-Side-PWM-Ausgang mit bis 3 A mit genauer<br>Strommessung                                                       |
| High-Side-PWM-Ausgang bis 7 A                                                                                       |
| Spannungsversorgung für Logik und Sensoren                                                                          |
| Spannungsversorgung für Ausgangstreiber                                                                             |
| Sensorversorgung, die jeweils über Kaltleiter gesi-<br>chert ist                                                    |
|                                                                                                                     |

Tab. 42: Verwendete Abkürzungen

**Anschluss** 

### 6.2 2-Draht-Sensoren anschließen

Die folgenden Anschlussbeispiele zeigen die Verdrahtung eines 2-Draht-Sensors mit den Anschlüssen X6, X10 oder X11 am xtremeBLOCK MIO1214.

Kompatibilität des Sensors

# 0

### HINWEIS

Beachten Sie die technischen Daten des Sensors und pr
üfen Sie die Kompatibilit
ät mit dem xtremeBLOCK MIO1214.



Abb. 11: 2-Draht-Sensoren anschließen (analog)

#### \_\_\_\_\_





| Anschluss X6 –  | Pin      | Signal                          |
|-----------------|----------|---------------------------------|
| AI_1 AI_2       | 1        | VEXT_SEN_1                      |
|                 | 2        | AI_1                            |
|                 | 3        | GND_SEN                         |
|                 | 4        | AI_2                            |
|                 | Tab. 43: | Anschluss X6 – AI_1 … AI_2      |
| Anschluss X10 – | Pin      | Signal                          |
| DI_P_1 DI_P_2   | 1        | VEXT_SEN_3                      |
|                 | 2        | DI_P_1                          |
|                 | 3        | GND_SEN                         |
|                 | 4        | DI_P_2                          |
|                 | Tab. 44: | Anschluss X10 – DI_P_1 … DI_P_2 |
| Anschluss X11 – | Pin      | Signal                          |
| DI_P_3 DI_P_4   | 1        | VEXT_SEN_3                      |
|                 | 2        | DI_P_3                          |
|                 | 3        | GND_SEN                         |
|                 | 4        | DI_P_4                          |
|                 | Tab. 45: | Anschluss X11 – DI_P_3 DI_P_4   |

### 6.3 3-Draht-Sensoren anschließen

Das folgende Anschlussbeispiel zeigt die Verdrahtung eines 3-Draht-Sensors mit den Anschlüssen X6 oder X10 am xtremeBLOCK MIO1214.

## 0

### HINWEIS

Beachten Sie die technischen Daten des Sensors und pr
üfen Sie die Kompatibilit
ät mit dem xtremeBLOCK.

### (i) INFO

### DI\_P\_1 als NPN

Der digitale Eingang DI\_P\_1 kann auch als NPN-Eingang konfiguriert werden. Die Verdrahtung bleibt gleich.

Kompatibilität des Sensors

### Anschluss





 Anschluss X6 –
 Pin
 Signal

 Al\_1 ... Al\_2
 1
 VEXT\_SEN\_1

 2
 Al\_1

 3
 GND\_SEN

 4
 Al\_2

 Tab. 46: Anschluss X6 – Al\_1 ... Al\_2



| Pin                                      | Signal     |  |  |  |
|------------------------------------------|------------|--|--|--|
| 1                                        | VEXT_SEN_3 |  |  |  |
| 2                                        | DI_P_1     |  |  |  |
| 3                                        | GND_SEN    |  |  |  |
| 4                                        | DI_P_2     |  |  |  |
| Tab. 47: Anschluss X10 – DI_P_1 … DI_P_2 |            |  |  |  |

### **IDENTIFIKATION UND KONFIGURATION** 7

### 7.1 Identifikation

Dieses Kapitel beschreibt die Identifikation des Geräts xtremeBLOCK MIO1214:

- Bestimmung der Hardware-Revision
- Auslesen des elektronischen Typenschilds EDS. Im EDS sind zahlreiche fertigungsspezifische Daten remanent abgelegt.
- Bestimmung der Betriebssystemversion des Geräts und der Softwarekomponenten

### 7.1.1 Geräteinformationen

| Geräte-       | Index  | Subindex | Beschreibung                        | Тур    | Zugriff | Default-Wert |
|---------------|--------|----------|-------------------------------------|--------|---------|--------------|
| informationen | 0x1018 | 0        | Anzahl der unterstützen<br>Einträge | U8     | R       |              |
|               |        | 1        | Hersteller-ID                       | U32    | R       | 0x00000B3    |
|               |        | 2        | Produktcode                         | U32    | R       |              |
|               |        | 3        | Revisionsnummer                     | U32    | R       |              |
|               |        | 4        | Seriennummer                        | U32    | R       |              |
|               | 0x1000 | 0        | Gerätetyp                           | U32    | R       |              |
|               | 0x1008 | 0        | Gerätename                          | String | R       |              |
|               | 0x1009 | 0        | Hardware-Revision                   | String | R       |              |
|               | 0x100A | 0        | Software-Version                    | String | R       |              |

Tab. 48: Geräteinformationen
#### 7.1.2 Elektronisches Typenschild EDS

Jeder xtremeBLOCK MIO1214 verfügt über ein elektronisches Typenschild EDS. In den CANopen-Objektindizes 0x4555 und 0x4565 sind fertigungsspezifische Daten abgelegt.

| EDS-Information | Index  | Subindex | Beschreibung                      | Тур    | Zugriff |
|-----------------|--------|----------|-----------------------------------|--------|---------|
|                 | 0x4555 | 0        | Anzahl der unterstützten Einträge | U8     | R       |
|                 |        | 1        | reserviert                        |        |         |
|                 |        | 2        | reserviert                        |        |         |
|                 |        | 3        | reserviert                        |        |         |
|                 |        | 4        | Modulcode                         | U16    | R       |
|                 |        | 5        | Produktname                       | String | R       |
|                 |        | 6        | PCB-Versionsnummer                | I16    | R       |
|                 |        | 7        | PCB-Optionen                      | I16    | R       |
|                 |        | 8        | reserviert                        |        |         |
|                 |        | 9        | Produktseriennummer               | String | R       |
|                 |        | 10       | Produktionszeitstempel: Tag       | U8     | R       |
|                 |        | 11       | Produktionszeitstempel: Monat     | U8     | R       |
|                 |        | 12       | Produktionszeitstempel: Jahr      | U16    | R       |
|                 |        | 13       | reserviert                        |        |         |
|                 |        | 14       | reserviert                        |        |         |
|                 |        | 15       | Mindest-OS-Version                | U32    | R       |
|                 |        | 16       | Mindest-Bootloader-Version        | U32    | R       |
|                 |        |          |                                   |        |         |

Tab. 49: EDS-Information

Elektronisches Typenschild

| Index  | Subindex | Beschreibung                                        | Тур    | Default |
|--------|----------|-----------------------------------------------------|--------|---------|
| 0x4565 | 0        | Anzahl der unterstützten Einträge                   | U32    | 5       |
|        | 1        | Versionsnummer des elektroni-<br>schen Typenschilds | U32    | 0       |
|        | 2        | Befehl                                              | U32    | 0       |
|        | 3        | Seriennummer des Geräts                             | String | 0       |
|        | 4        | Artikelnummer                                       | String | 0       |
|        | 5        | Version des Geräts                                  | String | 0       |

Tab. 50: Elektronisches Typenschild

#### 7.2 Betriebssystem

Die Betriebssysteme unserer Produkte werden laufend weiterentwickelt. Dabei kommen neue Funktionen hinzu, bestehende Funktionen werden erweitert und verbessert. Sie finden die aktuellen Betriebssystemdateien auf unserer Homepage im Bereich Downloads beim jeweiligen Produkt.

(i) INFO

#### Weiterführende Informationen

Weiterführende Informationen zum Thema finden Sie auf unserer Produktseite unter dem Tab Downloads <u>https://www.data-panel.eu/DP-81000-1-200</u>

| 7.2.1 | Betriebss | ystemupdate o | des Erweiteru | ngsmoduls |
|-------|-----------|---------------|---------------|-----------|
|       |           |               |               |           |

Dieses Kapitel beschreibt, wie Sie ein Betriebssystemupdate beim Erweiterungsmodul xtremeBLOCK MIO1214 durchführen. Sie haben hierbei mehrere Möglichkeiten, die Betriebssystemdatei auf das Erweiterungsmodul zu übertragen:

- Über die Steuerung
- Über das Kommandozeilen-Tool JetEasyDownload (ab Version 1.00.0.15)

#### Betriebssystemupdate über JetEasyDownload

Sie können die Betriebssystemdatei des Geräts mit einem CAN-Dongle von PEAK und dem Kommandozeilen-Tool JetEasyDownload (ab Version 1.00.0.15) aktualisieren.

Vorausgesetzte<br/>OS-VersionIn den xtremeBLOCK MIO1214 kann keine OS-Datei mit einer Version < 2.16.0.00<br/>eingespielt werden. Bei dem Versuch eine OS-Datei mit einer Version < 2.16.0.00<br/>einzuspielen passiert Folgendes:

- JetEasyDownload bricht mit einem Timeout-Fehler ab.
- Das bisherige OS wird gelöscht.
- Das Gerät wartet im Bootloader auf eine gültige OS-Datei.

Führen Sie nach einem erfolglosen OS-Import einen Reset des xtremeBLOCK MIO1214 durch. Anschließend können Sie das Update mit einer OS-Version ≥ 2.16.0.00 wiederholen.

JetEasyDownload Parameter Für den Aufruf von JetEasyDownload benötigen Sie spezifische Parameter.

| Parameter            | Beschreibung | Werte |                              |
|----------------------|--------------|-------|------------------------------|
| -H <num></num>       | Hardware     | 0=    | PCAN_ISA1CH                  |
|                      |              | 1=    | PCAN_ISA2CH                  |
|                      |              | 2=    | PCAN_PCI_1CH                 |
|                      |              | 3=    | PCAN_PCI_2CH                 |
|                      |              | 4=    | PCAN_PCC_1CH                 |
|                      |              | 5=    | PCAN_PCC_2CH                 |
|                      |              | 6=    | PCAN_USB_1CH                 |
|                      |              | 7=    | PCAN_USB_2CH                 |
|                      |              | 8=    | PCAN_Dongle Pro              |
|                      |              | 9=    | PCAN_Dongle                  |
|                      |              | 10=   | PCAN_NET DataPanel           |
|                      |              | 11=   | PCAN_DEV Default-Gerät       |
|                      |              | 20=   | IXXAT V2.18                  |
|                      |              | 22=   | IXXAT V3                     |
|                      |              | 100=  | Zuerst erkannte CAN-Hardware |
| -T <nodeid></nodeid> | Ziel-Node-ID |       |                              |

| Parameter        | Beschreibung     | Werte    |                  |
|------------------|------------------|----------|------------------|
| -B <num></num>   | Baudrate         | 0=       | 10 kB            |
|                  | Beachten Sie die | 1=       | 20 kB            |
|                  | zulässigen Bau-  | 2=       | 50 kB            |
|                  | draten Ihres Ge- | 3=       | 100 kB           |
|                  | räts!            | 4=       | 125 kB           |
|                  |                  | 5=       | 250 kB           |
|                  |                  | 6=       | 500 kB           |
|                  |                  | 7=       | 1 MB             |
| -S <num></num>   | SDO-Timeout      | Default  | 300 ms           |
| -L <name></name> | OS-Dateiname     | z. B. xB | SLOCK_Vx.xx.x.os |

Tab. 51: JetEasyDownload Parameter

Update durchführen JetEasyDownload -H100 -T48 -B5 -S8000 -LxBLOCK\_Vx.xx.xx.os

#### (i) INFO Auswahl des CAN-Dongles

Der Parameter –H100 wählt die zuerst erkannte CAN-Hardware aus, die am PC angeschlossen ist. Achten Sie darauf, dass am PC nur der CAN-Dongle von PEAK eingesteckt ist. Ansonsten kann es vorkommen, dass der falsche CAN-Dongle ausgewählt wird.

- ✓ JetEasyDownload und PEAK-CAN-Dongle sind funktionsbereit.
- Zwischen PEAK-CAN-Dongle und xtremeBLOCK MIO1214 besteht eine CAN-Verbindung.
- 1. Rufen Sie JetEasyDownload mit den oben angegebenen Parametern und einer gültigen OS-Datei auf.
  - ⇒ Das Gerät führt einen Reset durch.
  - ⇒ Das Gerät startet im Bootloader mit einem einzelnen Heartbeat im Init-Zustand (Daten = 0x00).
- 2. Warten Sie ca. 7 Sekunden lang, während das Gerät den Flash formatiert.
  - ⇒ Das Gerät startet den Download-Vorgang.
- ⇒ Das Gerät startet automatisch mit der neuen Firmware.

## 8 PARAMETRIERUNG

#### 8.1 Konzept und Ansteuerung

Das Konzept des Geräts xtremeBLOCK MIO1214 beruht auf der Zuweisung von Interfaces zu den Eingän- gen und Ausgängen des Geräts. Jeder Eingang und Ausgang des Geräts wird als Port bezeich- net und kann konfiguriert werden. Die Funktion eines Ports wird bestimmt, indem ihm ein Inter- face zugewiesen wird. Jedes Interface beinhaltet Parameter, Werte und einen Status:

- Jedem Interface können Parameter zugewiesen werden.
- Über Werte können Informationen an jedes Interface übermittelt und gesetzt werden.
- Der Status gibt Auskunft über den Zustand des Interface.



Abb. 14: Konzept und Ansteuerung

#### 8.1.1 Konfigurationsmöglichkeiten der Anschlüsse

Die folgende Tabelle zeigt eine Übersicht über die Ports und die jeweils zulässigen Interfaces:

| Ports         | Beschreibung      | Zulässige Interfaces                                                 |
|---------------|-------------------|----------------------------------------------------------------------|
| AI_1 AI_8     | Analoge Eingänge  | AI_VOLTAGE                                                           |
|               |                   | AI_CURRENT                                                           |
|               |                   | DI_PNP                                                               |
| DI_P_1 DI_P_4 | Digitale Eingänge | DI_PNP (DI_NPN nur für DI_P_1)                                       |
|               |                   | FI_PNP (FI_NPN nur für DI_P_1)                                       |
|               |                   | ENCI_PNP (Jeweils für DI_P_1 und DI_P_2 sowie für DI_P_3 und DI_P_4) |
| PWMi_H3_1     | PWM-Ausgänge      | PWMO_HS3, CPWMO_HS3, DO_HS3                                          |
| PWMi_H3_4     |                   | DI_NPN, DI_PNP                                                       |

| Ports             | Beschreibung      | Zulässige Interfaces                       |
|-------------------|-------------------|--------------------------------------------|
| PWM_H7_1 PWM_H7_6 | PWM-Ausgänge      | PWMO_HS7, PWMO_HS3, DO_HS3, DO_HS3, DO_HS7 |
|                   |                   | <br>DI_NPN, DI_PNP                         |
| DO_H3_1 DO_H3_4   | Digitale Ausgänge | DO_HS3                                     |
|                   |                   | DI_NPN, DI_PNP                             |

 Tab. 52:
 Übersicht Ports und zulässige Interfaces

Beachten Sie bei der Konfiguration der Ausgänge die Angaben im Kapitel Ausgänge [▶ 17].

#### 8.1.2 I/O-Ports und SDO-Abbild

Jeder I/O-Port wird mit einem SDO-Index abgebildet:

| I/O-Ports           | SDO-Index     |
|---------------------|---------------|
| AI_1 AI_8           | 0x2100 0x2107 |
| DI_P_1 DI_P_4       | 0x2108 0x210B |
| PWMi_H3_1 PWMi_H3_4 | 0x210C 0x210F |
| PWM_H7_1 PWM_H7_6   | 0x2110 0x2115 |
| DO_H3_1 DO_H3_4     | 0x2116 0x2119 |

 Tab. 53: SDO-Abbilder der I/O-Ports

Über Subindex 1 weisen Sie einem Port ein bestimmtes Interface zu (Übersicht – I/O-Interfaces ▶ 42]). Über die weiteren Subindizes greifen Sie auf die Parameter, Werte und Status zu.

| (i) INFO | Interfaces zuweisen                                                                                 |
|----------|-----------------------------------------------------------------------------------------------------|
|          | Sie können ein Interface nur während des Startvorganges im Zustand <b>Pre-Operational</b> zuweisen. |

| Index      | Subindex | Beschreibung                                                                                                                                                                                                                                                                                                                                                    | Тур | Zugriff | Default-<br>Wert                           |
|------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|--------------------------------------------|
| 0x2100     | 0        | Anzahl der unterstützen Einträge                                                                                                                                                                                                                                                                                                                                | U8  | R       |                                            |
| <br>0x2119 | 1        | ID des Interface                                                                                                                                                                                                                                                                                                                                                | U32 | R/W     | Siehe Auflis-<br>tung unter<br>der Tabelle |
|            | 2        | I/O-Status                                                                                                                                                                                                                                                                                                                                                      | U32 | R       | (Inaktiv)<br>Bit gesetzt                   |
|            | 10 29    | Eingangswerte                                                                                                                                                                                                                                                                                                                                                   |     | R       |                                            |
|            | 30 49    | Ausgangswerte<br>Bei einem Wechsel in den Zustand<br><b>Operational</b> werden die Sollwerte<br>auf 0 gesetzt. Ein zuvor gesetzter<br>Wert bleibt bei einem Wechsel vom<br>Zustand <b>Operational</b> zu <b>Pre-Ope-</b><br><b>rational</b> nicht erhalten.<br>Nur im Zustand <b>Operational</b> mög-<br>lich, sonst kommt es zu einem Feh-<br>ler (SDO-Abort). |     | R/W     | 0                                          |
|            | 50 199   | Parameter                                                                                                                                                                                                                                                                                                                                                       |     | R/W     |                                            |

 Tab. 54: Subindizes f
 ür den Zugriff auf Parameter, Werte und Status

#### Die Default-Werte der Interface-ID variieren je nach Index:

- 0x2100 ... 0x2107 = 1 (AI\_VOLTAGE)
- 0x2108 ... 0x210B = 3 (DI\_PNP)
- 0x210C ... 0x210F = 6 (PWMO\_HS3)
- 0x2110 ... 0x2115 = 11 (PWMO\_HS7)
- 0x2116 ... 0x2119 = 7 (DO\_HS3)

#### 8.1.3 Übersicht – I/O-Interfaces

Die folgende Tabelle ist eine Übersicht über die I/O-Interfaces und deren verfügbare Parameter, Werte und Status [▶ 45].

| (i) INFO | Einschränkungen                                                                                                                            |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|
|          | Die folgenden Einschränkungen sind in den unterschiedlichen Zuständen <b>Operational</b> und <b>Pre-Operational</b> zu beachten:           |
|          | <ul> <li>Sie können ein Interface nur während des Startvorganges im<br/>Zustand Pre-Operational zuweisen.</li> </ul>                       |
|          | <ul> <li>Sie können Ausgangswerte nur im Zustand Operational konfigurie-<br/>ren.</li> </ul>                                               |
|          | Parameter konnen Sie in beiden Zustanden konfigurieren.                                                                                    |
|          | <ul> <li>Wenn Sie den Zustand Pre-Operational verlassen, dann werden<br/>alle Werte auf 0 gesetzt.</li> </ul>                              |
|          | <ul> <li>Alle Ausgänge sind im Zustand Pre-Operational inaktiv.</li> <li>Die Eingänge bleiben im Zustand Pre-Operational aktiv.</li> </ul> |

| ID<br>Dez/Hex | Interface                   | Parameter     | Werte                | Status            |
|---------------|-----------------------------|---------------|----------------------|-------------------|
| 0             | INACTIVE IO                 |               |                      | ist ausgeschaltet |
| 1             | AI_VOLTAGE                  | SENSOR_SUPPLY | I_VOLTAGE            | INACTIVE          |
|               | Analoger                    | FILTER_DEEP   | I_RATIO              | ERROR             |
|               | Spannungsein-<br>gang       | MIN_DEVIATION |                      | OVERVOLTAGE       |
|               | 5 5                         |               |                      | SUPPLY_FAULT      |
| 2             | AI_CURRENT                  | SENSOR_SUPPLY | I_CURRENT            | INACTIVE          |
|               | Analoger                    | FILTER_DEEP   |                      | ERROR             |
|               | Stromeingang                | MIN_DEVIATION |                      | OVERCURRENT       |
|               |                             |               |                      | SUPPLY_FAULT      |
| 3             | DI_PNP                      | SENSOR_SUPPLY | I_DIGITAL            | INACTIVE          |
|               | Digitaler                   |               | I_COUNTER            | ERROR             |
|               | Eingang<br>(Active-High mit |               |                      | SUPPLY_FAULT      |
|               | Pull-down)                  |               |                      |                   |
| 4             | FI_PNP                      | SENSOR_SUPPLY | I_FREQUENCY          | INACTIVE          |
|               | Frequenz-                   | TIMEOUT_TIME  | I_DUTY_CYCLE         | ERROR             |
|               | Eingang                     | GATE_TIME     | I_DIGITAL            | SUPPLY_FAULT      |
|               | Pull-down)                  |               | I_COUNTER            | TIMEOUT           |
|               |                             |               | I_PERIODIC_TI-<br>ME |                   |
|               |                             |               | I_H_PULSE_TIME       |                   |
|               |                             |               | I_L_PULSE_TIME       |                   |

| ID<br>Dez/Hex | Interface                   | Parameter                  | Werte        | Status       |
|---------------|-----------------------------|----------------------------|--------------|--------------|
| 5             | DI_NPN                      | SENSOR_SUPPLY              | I_DIGITAL    | INACTIVE     |
|               | Digitaler Eingang           |                            | I_COUNTER    | ERROR        |
|               | (Active-Low mit<br>Pull-up) |                            |              | SUPPLY_FAULT |
| 6             | PWMO_HS3                    | PWM_FRQ                    | I_HCURRENT   | INACTIVE     |
|               | High-Side-PWM-              | DITHER_FRQ                 | O_DUTY_CYCLE | ERROR        |
|               | Ausgang (bis zu             | DITHER_AMP                 |              | OVERCURRENT  |
|               | Strommessung)               | MAX_CURRENT                |              | OPEN_CIRCUIT |
|               |                             | OVERCURRENT_TIME           |              |              |
|               |                             | FILTER_DEEP                |              |              |
|               |                             | MIN_DEVIATION              |              |              |
|               |                             | MIN_CURRENT                |              |              |
|               |                             | OPENCIRCUIT_DETEC-         |              |              |
| 7             | DO_HS3                      | MAX_CURRENT                | I_HCURRENT   | INACTIVE     |
|               | High-Side-                  | OVERCURRENT_TIME           | O_DIGITAL    | ERROR        |
|               | Digital-Ausgang             | FILTER_DEEP                |              | OVERCURRENT  |
|               |                             | MIN_DEVIATION              |              | OPEN_CIRCUIT |
|               |                             | MIN_CURRENT                |              |              |
|               |                             | OPENCIRCUIT_DETEC-<br>TION |              |              |
| 8             | reserviert                  |                            |              |              |
| 9             | reserviert                  |                            |              |              |
| 10/a          | CPWMO_HS3                   | PWM_FRQ                    | I_HCURRENT   | INACTIVE     |
|               | High-Side-                  | DITHER_FRQ                 | O_HCURRENT   | ERROR        |
|               | (bis zu 3 A, mit            | DITHER_AMP                 |              | OVERCURRENT  |
|               | Stromregelung)              | CURRENT_CONTROL_P          |              | OPEN_CIRCUIT |
|               |                             | CURRENT_CONTROL_I          |              | CC_UNLOCK    |
|               |                             | CURRENT_CONTROL_D          |              |              |
|               |                             | MAX_CURRENT                |              |              |
|               |                             | OVERCURRENT_TIME           |              |              |
|               |                             | CURRENT_CON-<br>TROL_TIME  |              |              |
|               |                             | FILTER_DEEP                |              |              |
|               |                             | MIN_DEVIATION              |              |              |
|               |                             | MIN_CURRENT                |              |              |
|               |                             | OPENCIRCUIT_DETEC-         |              |              |

| ID<br>Dez/Hex | Interface                       | Parameter                  | Werte                | Status       |
|---------------|---------------------------------|----------------------------|----------------------|--------------|
| 11/b          | PWMO_HS7                        | PWM_FRQ                    | I_HCURRENT           | INACTIVE     |
|               | High-Side-                      | DITHER_FRQ                 | O_DUTY_CYCLE         | ERROR        |
|               | PWM-Ausgang<br>(bis zu 7 A)     | DITHER_AMP                 |                      | OVERCURRENT  |
|               |                                 | MAX_CURRENT                |                      | OPEN_CIRCUIT |
|               |                                 | OVERCURRENT_TIME           |                      |              |
|               |                                 | FILTER_DEEP                |                      |              |
|               |                                 | MIN_DEVIATION              |                      |              |
|               |                                 | MIN_CURRENT                |                      |              |
|               |                                 | OPENCIRCUIT_DETEC-         |                      |              |
| 12/c          | DO_HS7                          | MAX_CURRENT                | I_HCURRENT           | INACTIVE     |
|               | High-Side-                      | OVERCURRENT_TIME           | O_DIGITAL            | ERROR        |
|               | Digital-Ausgang<br>(bis zu 7 A) | FILTER_DEEP                |                      | OVERCURRENT  |
|               |                                 | MIN_DEVIATION              |                      | OPEN_CIRCUIT |
|               |                                 | MIN_CURRENT                |                      |              |
|               |                                 | OPENCIRCUIT_DETEC-<br>TION |                      |              |
| 13/d          | FI_NPN                          | SENSOR_SUPPLY              | I_FREQUENCY          | INACTIVE     |
|               | Frequenz-                       | TIMEOUT_TIME               | I_DUTY_CYCLE         | ERROR        |
|               | Active-Low mit                  | GATE_TIME                  | I_DIGITAL            | SUPPLY_FAULT |
|               | Pull-up)                        |                            | I_COUNTER            | TIMEOUT      |
|               |                                 |                            | I_PERIODIC_TI-<br>ME |              |
|               |                                 |                            | I_H_PULSE_TIME       |              |
|               |                                 |                            | I_L_PULSE_TIME       |              |
| 26/1a         | ENCI_PNP                        | SENSOR_SUPPLY              | I_COUNTER            | INACTIVE     |
|               |                                 | TIMEOUT_TIME               | I_DIRECTION          | ERROR        |
|               | Encoder-Ein-<br>gang            | RESOLUTION                 |                      | SUPPLY_FAULT |

Tab. 55: Übersicht - I/O- Interfaces

#### 8.1.4 Parameter, Werte und Status

#### Eingangswerte

| Subinde | X               | Beschreibung                                                | Тур  | Zugriff | Einheit/<br>Wertebereich |
|---------|-----------------|-------------------------------------------------------------|------|---------|--------------------------|
| 10      | I_VOLTAGE       | Spannungswert                                               | U16  | R       | 1 mV                     |
| 11      | I_RATIO         | Verhältnis zu VBAT_ECU                                      | U16  | R       | 1 ‰                      |
| 12      | I_CURRENT       | Stromwert (kleiner Messbereich)                             | U16  | R       | 1 µA                     |
| 13      | I_HCURRENT      | Stromwert (großer Messbereich)                              | U16  | R       | 1 mA                     |
| 14      | I_FREQUENCY     | Frequenzwert                                                | U32  | R       | 0,1 Hz                   |
| 15      | I_DUTY_CYCLE    | Tastverhältnis                                              | U16  | R       | 1 ‰                      |
| 16      | I_DIGITAL       | Digitalwert                                                 | BOOL | R       | 0 1                      |
| 17      | I_COUNTER       | Zählerwert (freilaufender Zähler)                           | U32  | R       | 0 4294967<br>295         |
| 18      | I_PERIODIC_TIME | Periodenzeit, es wird die Dauer<br>der Periode gemessen     | U32  | R       | 1 µs                     |
| 19      | I_HPULS_TIME    | High-Puls-Zeit, es wird die Dauer<br>des High-Puls gemessen | U32  | R       | 1 µs                     |
| 20      | I_LPULS_TIME    | Low-Puls-Zeit, es wird die Dauer<br>des Low-Puls gemessen   | U32  | R       | 1 µs                     |
| 22      | I_DIRECTION     | Aktuelle Laufrichtung                                       | U8   | R       | 0 2                      |
|         |                 |                                                             |      |         | 0 = keine<br>Bewegung    |
|         |                 |                                                             |      |         | 1 = vorwärts             |
|         |                 |                                                             |      |         | 2 = rückwärts            |

Tab. 56: Eingangswerte

#### Ausgangswerte

| Subinde | ×            | Beschreibung                                    | Тур  | Einheit/<br>Wertebereich |
|---------|--------------|-------------------------------------------------|------|--------------------------|
| 30      | O_DIGITAL    | Digitalwert                                     | BOOL | 0 1                      |
| 31      | O_DUTY_CYCLE | Tastverhältnis                                  | U16  | 1 ‰                      |
| 32      | O_HCURRENT   | Eingestellter Stromwert (großer<br>Messbereich) | U16  | 1 mA                     |

Tab. 57: Ausgangswerte

#### Parameter

| Subind | ех-Тур        | Beschreibung                                              | Тур | Zugriff | Einheit/<br>Wertebereich                                                             |
|--------|---------------|-----------------------------------------------------------|-----|---------|--------------------------------------------------------------------------------------|
| 50     | SENSOR_SUPPLY | Zugehörige Sensorversor-<br>gung, die mit überwacht wird. | U16 | R/W     | 0 = aus<br>1 =<br>VEXT_SEN_1<br>2 =<br>VEXT_SEN_2<br>3 =<br>VEXT_SEN_3<br>Default: 0 |

| Subinde | эх-Тур                   | Beschreibung                                                                                                                                                              | Тур | Zugriff | Einheit/<br>Wertebereich                                    |
|---------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-------------------------------------------------------------|
| 51      | PWM_FRQ                  | PWM-Frequenz                                                                                                                                                              | U32 | R/W     | 0,1 Hz<br>Default: 1 kHz                                    |
| 52      | DITHER_FRQ               | Dither-Frequenz                                                                                                                                                           | U32 | R/W     | 0,1 Hz<br>Default: 1.000                                    |
| 53      | DITHER_AMP               | Dither-Amplitude                                                                                                                                                          | U16 | R/W     | 0,1 %<br>Default: 0                                         |
| 54      | CURRENT_CONTROL_P        | Stromregelung P-Anteil<br>x1000000                                                                                                                                        | U32 | R/W     | 0<br><br>4294967295<br>Default:<br>100.000                  |
| 55      | CURRENT_CONTROL_I        | Stromregelung I-Anteil<br>x1000000                                                                                                                                        | U32 | R/W     | 0<br><br>4294967295<br>Default:<br>10.000                   |
| 56      | CURRENT_CONTROL_D        | Stromregelung D-Anteil<br>x1000000                                                                                                                                        | U32 | R/W     | 0<br><br>4294967295<br>Default: 400                         |
| 57      | MAX_CURRENT              | Maximaler Strom, der den<br>vorgegebenen Wert im Inter-<br>face-Typ nicht übersteigen<br>kann.                                                                            | U16 | R/W     | 1 mA<br>Default:<br>3 A für<br>PWMi_H3<br>7 A für<br>PWM_H7 |
| 58      | OVERCURRENT_TIME         | Bei Überstrom wird das Ge-<br>rät nach der entsprechenden<br>Zeit abgeschaltet.                                                                                           | U32 | R/W     | 1 ms<br>Default:<br>500 ms                                  |
| 59      | TIMEOUT_TIME             | Setzt das TIMEOUT-Bit im<br>Status bei der Frequenzmes-<br>sung, wenn keine Signalän-<br>derung anliegt. Bestimmt, ab<br>wann I_DIRECTION keine<br>Bewegung signalisiert. | U32 | R/W     | 0<br><br>4294967295<br>Default:<br>1.000 ms                 |
| 60      | CURRENT_<br>CONTROL_TIME | Zykluszeit der Stromregelung                                                                                                                                              | U32 | R/W     | 1 ms<br>Default: 5 ms                                       |
| 61      | FILTER_DEEP              | Gleitende Mittelwertberech-<br>nungstiefe                                                                                                                                 | U32 | R/W     | 1 32<br>Default: 1                                          |
| 62      | GATE_TIME                | Messzeit der Frequenzmes-<br>sung                                                                                                                                         | U32 | R/W     | 1 ms<br>Default: 1.000                                      |
| 63      | MIN_DEVIATION            | Minimum-Abweichung für<br>Eingangswerte (Ab OS<br>2.04.0.00)                                                                                                              | U16 | R/W     | µA bzw. mV<br>Default für AI:<br>10                         |

| Subinde | ех-Тур                    | Beschreibung                                                                                                                                                                                                                                   | Тур | Zugriff | Einheit/<br>Werte <u>bereich</u>                                                               |
|---------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|------------------------------------------------------------------------------------------------|
| 64      | MIN_CURRENT               | Unterschreitet der am Aus-<br>gang anliegende Strom den<br>eingestellten Schwellwert,<br>dann wird dies als Kabel-<br>bruch erkannt und der Status<br>wird im Zustand <b>Operational</b><br>gesetzt (ab OS 2.05.0.00).                         | U16 | R/W     | 1 mA<br>Default ist der<br>minimal mög-<br>liche Wert:<br>PWMi-H3-<br>Ausgänge:<br>min         |
|         |                           |                                                                                                                                                                                                                                                |     |         | <ul> <li>200 mA</li> <li>sonstige<br/>Ausgänge:<br/>min.<br/>500 mA</li> </ul>                 |
| 65      | OPENCIRCUIT_<br>DETECTION | Aktiviert/deaktiviert die Ka-<br>belbrucherkennung eines<br>Ports.                                                                                                                                                                             | U16 | R/W     | 0 = keine Ka-<br>belbrucher-<br>kennung                                                        |
|         |                           | <b>Modus 1</b> prüft beim Booten<br>einmalig, ob der Ausgang<br>von einer Last nach GND ge-<br>zogen wird.                                                                                                                                     |     |         | 1 = Kabelbru-<br>cherkennung<br>nur im Zu-<br>stand <b>Pre-</b>                                |
|         |                           | <b>Modus 2</b> prüft zusätzlich im<br>eingeschalteten Zustand, ob<br>MIN_CURRENT unterschrit-<br>ten wurde.                                                                                                                                    |     |         | Operational<br>2 = perma-<br>nente Kabel-<br>brucherken-                                       |
|         |                           | HINWEIS! Verwenden Sie<br>den Wert 2 (permanente<br>Kabelbrucherkennung)<br>nicht für PWM-Ausgänge<br>und stromgeregelte Aus-<br>gänge. Dies kann dazu füh-<br>ren, dass ein Kabelbruch er-<br>kannt wird, obwohl kein<br>Kabelbruch vorliegt. |     |         | nung<br>Default: 1                                                                             |
| 68      | RESOLUTION                | Auflösung z.B. am Encoder-<br>Eingang                                                                                                                                                                                                          | U8  | R/W     | 0 2<br>0 =<br>1/4 Auflösung<br>1 =<br>1/2 Auflösung<br>2 =<br>volle<br>Auflösung<br>Default: 0 |

Tab. 58: Parameter

#### Status

| Bit        | Status       | Beschreibung                                                                                                                     |
|------------|--------------|----------------------------------------------------------------------------------------------------------------------------------|
| 0x0000001  | INACTIVE     | Der Port ist abgeschaltet.                                                                                                       |
| 0x0000002  | ERROR        | Ein undefinierter Fehler liegt vor.                                                                                              |
| 0x0000008  | OVERVOLTAGE  | Am Eingang liegt Überspannung an.                                                                                                |
| 0x00000010 | OVERCURRENT  | Am Eingang/Ausgang liegt Überstrom an.                                                                                           |
| 0x0000020  | SUPPLY_FAULT | Die Versorgungsspannung VEXT_SEN ist fehlerhaft.                                                                                 |
| 0x0000080  | OPEN_CIRCUIT | Am Ausgang ist keine Last vorhanden, z.B. bei Kabel-<br>bruch. Dieser Statuseintrag wird nur beim Booten des<br>Gerätes geprüft! |
| 0x00000100 | TIMEOUT      | Die Zeit bei der Frequenzmessung wurde überschritten.                                                                            |
| 0x00000200 | CC_UNLOCK    | Die Stromregelung ist nicht im Regelbereich.                                                                                     |

Tab. 59: Status

#### 8.2 Node-ID einstellen

Die Basis-Node-ID kann über die Systemparameter [► 51] eingestellt werden. Der Default-Wert ist 0x30.

Die Konfigurationseingänge (CFG1 und CFG2) erzeugen einen Offset zu der eingestellten Basis-Node-ID.

Die CFG1 und CFG2 können einen der 3 folgenden Zustände haben:

- Brücke zu  $GND \rightarrow Low L$
- Brücke zu VBAT  $\rightarrow$  High H
- Offen  $\rightarrow$  O

Der Offset entspricht den Angaben in der folgenden Tabelle:

| CFG1 | CFG2 | Offset der Modul-ID |
|------|------|---------------------|
| 0    | 0    | 0                   |
| L    | 0    | 1                   |
| Н    | 0    | 2                   |
| 0    | L    | 3                   |
| L    | L    | 4                   |
| Н    | L    | 5                   |
| 0    | Н    | 6                   |
| L    | Н    | 7                   |
| Н    | Н    | 8                   |

Zur Realisierung der Zustände werden die Pins des CFG-Anschlusses (X12) mit Hilfe der Adressierungsstecker wie folgt verbunden:

|--|

| 1 | VBAT_ECU |
|---|----------|
| 2 | CFG1     |
| 3 | GND_PWR  |
| 4 | CFG2     |

 Tab. 60: CFG-Stecker (X12) Pinbelegung

| CFG-Pin Steckbrücken | Node-ID-Offset |
|----------------------|----------------|
| -                    | 0              |
| 2-3                  | 1              |
| 1 – 2                | 2              |
| 3 – 4                | 3              |
| 2-3-4                | 4              |
| 1 – 2 und 3 – 4      | 5              |
| 1 – 4                | 6              |
| 2 – 3 und 1 – 4      | 7              |
| 1 – 2 und 1 – 4      | 8              |

Tab. 61: CFG-Pins Steckbrücken

### (i) INFO

#### Ungenutzte Stecker abdichten

Dichten Sie ungenutzte Stecker mit einem Blindstecker [▶ 71] ab. Dieser dient ebenfalls zur Einstellung der Node-ID 00.

### 8.3 Gerätediagnose

#### Gerätediagnose

| Index  | Subindex | Beschreibung                      | Тур | Zugriff | Einheit |
|--------|----------|-----------------------------------|-----|---------|---------|
| 0x2000 | 0        | Anzahl der unterstützten Einträge | U8  | R       |         |
|        | 2        | VBAT_PWR                          | U16 | R       | mV      |
|        | 3        | 7V IO                             | U16 | R       | mV      |
|        | 4        | 3V3                               | U16 | R       | mV      |
|        | 6        | PCB-Temperatur                    | I16 | R       | 0,1 °C  |
|        | 7        | CPU-Temperatur                    | 116 | R       | 0,1 °C  |
|        | 9        | CPU-VRef                          | U16 | R       | mV      |
|        | 10       | SPWR1                             | U16 | R       | mV      |
|        | 11       | SPWR2                             | U16 | R       | mV      |
|        | 12       | SPWR3                             | U16 | R       | mV      |
|        | 13       | VBAT_ECU                          | U16 | R       | mV      |
|        | 14       | CFG1                              | U16 | R       | mV      |
|        | 15       | CFG2                              | U16 | R       | mV      |
|        | 20       | Gesamtstrom ±50 %                 | U32 | R       | mA      |

Tab. 62: Gerätediagnose

#### Statusinformation

| Index  | Subindex | Beschreibung                  | Тур | Zugriff |
|--------|----------|-------------------------------|-----|---------|
| 0x1001 | 0        | Fehlerregister                | U8  | R       |
|        | Bit 0    | Allgemeiner Fehler            |     | R       |
|        | Bit 1    | Gesamter Überstrom            |     | R       |
|        | Bit 3    | Temperatur                    |     | R       |
|        | Bit 4    | Kommunikationsfehler          |     | R       |
|        | Bit 7    | CI-Fehler (ungültige Eingabe) |     | R       |

Tab. 63: Statusinformation

## 8.4 Einstellungen permanent speichern und auf Default-Werte zurücksetzen

Folgende Parameter werden permanent im EEPROM gespeichert:

- PDO-Mapping
- Alle I/O-Interface-Zuweisungen und Parameter
- Producer Heartbeat Time

#### Einstellungen speichern

| Index  | Subindex | Beschro              | eibung                                                                 |           |            | Тур  | Zugr     | riff De<br>We | efault-<br>ert |
|--------|----------|----------------------|------------------------------------------------------------------------|-----------|------------|------|----------|---------------|----------------|
| 0x1010 | 0        | Anzahl d             | ler unters                                                             | stützen E | inträge    | U8   | R        | 1             |                |
|        | 1        | Alle Para            | ameter sp                                                              | beichern  |            | U32  | R/W      |               |                |
|        |          | Wenn di<br>wird, dar | Wenn die spezifische Signatur 0x6<br>wird, dann wird die Speicherung a |           |            |      | ("evas") | geschrie      | ben            |
|        |          | В0                   | B1                                                                     | B2        | <b>B</b> 3 | B4   | B5       | B6            | B7             |
|        |          | 0x23                 | 0x10                                                                   | 0x10      | 0x01       | 0x73 | 0x61     | 0x76          | 0x65           |
|        |          | SDO                  | Inc                                                                    | lex       | Subidx     | "S"  | "a"      | "V"           | "e"            |

Tab. 64: Einstellungen im EEPROM speichern

| Index  | Subindex | Beschr                         | eibung              |                         |                          | Тур                   | Zugr                   | iff De<br>We            | efault-<br>ert    |
|--------|----------|--------------------------------|---------------------|-------------------------|--------------------------|-----------------------|------------------------|-------------------------|-------------------|
| 0x1011 | 0        | Anzahl                         | der unte            | erstützen               | Einträge                 | U8                    | R                      | 1                       |                   |
|        | 1        | Komma                          | ndoregi             | ster                    |                          | U32                   | R/W                    | 1                       |                   |
|        |          | Wenn d<br>wird, da<br>gesetzt. | ie spezi<br>nn werc | fische Si<br>Ien alle E | ignatur 0><br>Einstellun | (64616F6<br>gen auf c | 6C ("daol<br>lie Defau | l") geschi<br>Ilt-Werte | rieben<br>zurück- |
|        |          | В0                             | B1                  | B2                      | <b>B</b> 3               | B4                    | B5                     | <b>B</b> 6              | B7                |
|        |          | 0x23                           | 0x10                | 0x11                    | 0x01                     | 0x6C                  | 0x6F                   | 0x61                    | 0x64              |
|        |          | SDO                            | In                  | dex                     | Subidx                   | "I"                   | "O"                    | "a"                     | "d"               |

#### Einstellungen auf Default-Werte zurücksetzen

 Tab. 65: Einstellungen auf Default-Werte zurücksetzen

| (i) INFO | Einstellungen aus dem EEPROM laden                                                                                                                                                             |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Beim Booten werden automatisch die zuletzt gespeicherten Einstellungen<br>geladen.<br>Bei einem Firmwareupdate werden die Einstellungen möglicherweise auf<br>die Default-Werte zurückgesetzt. |

#### Einstellen der Parameter

Das Einstellen der Parameter läuft wie folgt ab:

- 1. Die Fahrzeugsteuerung konfiguriert die Parameter des xtremeBLOCK MIO1214.
- 2. Die Fahrzeugsteuerung speichert die Einstellungen per Index 0x1010 im EEPROM ab.
- 3. Die Fahrzeugsteuerung liest den CRC über Index 0x4556 Subindex 1 aus und speichert diesen Wert lokal remanent ab.
- 4. Nach einem Neustart des xtremeBLOCK MIO1214 vergleicht die Fahrzeugsteuerung den lokal gespeicherten CRC-Wert mit dem Wert in Index 0x4556 Subindex 1. Wenn

diese nicht übereinstimmen, muss die Parametrierung erneut starten.

Aktivierung der Änderungen
 Die Änderungen an den Indizes 0x1010 und 0x1011 werden erst nach einem Neustart aktiv.

#### 8.5 Systemparameter

| Index  | Subin-<br>dex | Beschreibung                                                                                          | Тур | Zugriff | Default-<br>Wert |
|--------|---------------|-------------------------------------------------------------------------------------------------------|-----|---------|------------------|
| 0x4556 | 0             | Anzahl der unterstützen Einträge                                                                      | U8  | R       | 4                |
|        | 1             | CRC der aktuellen Parametereinstellungen*                                                             | U32 | R       |                  |
|        |               | Mit der CRC kann geprüft werden, ob die Ein-<br>stellungen neu ins Gerät übertragen werden<br>müssen. |     |         |                  |
|        | 3             | CAN-Baudrate                                                                                          | U8  | R/W     | 1                |
|        |               | 0: 125 kBaud                                                                                          |     |         |                  |
|        |               | 1: 250 kBaud (Default)                                                                                |     |         |                  |
|        |               | 2: 500 kBaud                                                                                          |     |         |                  |
|        |               | 3: 1 MBaud                                                                                            |     |         |                  |
|        | 4             | CANopen-Node-ID, welche zukünftig verwen-<br>det werden soll (ohne Config-Pins)                       |     | R/W     | 0x30             |
|        | 5             | CANopen-Node-ID, welche derzeit verwendet wird (ohne Config-Pins)                                     | U8  | R       | 0x30             |
|        | 6             | Offset zur BasisID (Config-Pins)                                                                      | U8  | R       | 0                |

Tab. 66: Systemparameter

\*Die CRC wird über die im Kapitel Einstellungen permanent speichern und auf Default-Werte zurücksetzen [> 50] beschriebenen aktuellen Parameterwerte berechnet.

#### (i) INFO Aktivierung der eingestellten Systemparameter Die eingestellten Systemparameter können Sie erst nach einem Neustart des Systems nutzen.

#### 8.6 Mapping von Prozessdatenobjekten (PDOs)

Die Sende-PDOs (TPDO 1 ... 4) und Empfangs-PDOs (RPDO 1 ... 4) stellen Sie über die folgenden Parameter ein.

#### Gültigkeit eines PDOs

Über das MSB (most significant bit) der COB-ID bestimmen Sie die Gültigkeit eines PDOs. Um ein PDO zu mappen, setzen Sie das PDO zuerst auf ungültig (Bit 31 = 1) und anschließend auf gültig (Bit 31 = 0).

| Bit        | Wert | Bedeutung                                                 |
|------------|------|-----------------------------------------------------------|
| 31 (MSB)   | 0    | PDO existiert/ist gültig                                  |
|            | 1    | PDO existiert nicht/ist ungültig                          |
| 30         | 0    | RTR (Remote Transmission Request) für dieses PDO zulässig |
|            | 1    | Keine RTR für dieses PDO zulässig                         |
| 29         | 0    | 11-Bit-ID (CAN 2.0A)                                      |
|            | 1    | 29-Bit-ID (CAN 2.0B)                                      |
| 28 11      | 0    | Wenn Bit 29 = 0                                           |
|            | Х    | Wenn Bit 29 = 1: Bits 28 11 der 29-Bit-COB-ID             |
| 10 0 (LSB) | Х    | Bits 10 0 der COB-ID                                      |

 Tab. 67: Gültigkeit eines PDOs

#### 8.6.1 RPDO-Kommunikationsparameter

| Index  | Subin-<br>dex | Beschreibung     | Тур | Zugriff | Einheit | Default-Wert      |           |
|--------|---------------|------------------|-----|---------|---------|-------------------|-----------|
| 0x1400 | 0             | Anzahl der un-   | U8  | R       |         | 0                 |           |
|        |               | terstützen Ein-  |     |         |         |                   |           |
| 0X1403 |               | trage            |     |         |         |                   |           |
|        | 1             | COB-ID (frei     | U32 | R/W     |         | RPDO 1:           | 0x200     |
|        |               | konfigurierbarer |     |         |         | Index 0x1400      | + Node-ID |
|        |               | Wert für PDOs)   |     |         |         | RPDO 2:           | 0x300     |
|        |               |                  |     |         |         | Index 0x1401      | + Node-ID |
|        |               |                  |     |         |         | RPDO 3:           | 0x400     |
|        |               |                  |     |         |         | Index 0x1402      | + Node-ID |
|        |               |                  |     |         |         | RPDO 4:           | 0x500     |
|        |               |                  |     |         |         | Index 0x1403      | + Node-ID |
|        | 2             | Transmission     | U8  | R       |         | Azyklischer Typ = | 0         |
|        |               | Туре             |     |         |         |                   |           |
|        | 3             | Inhibit Time     | U16 | R/W     | 0,1 ms  | 100 (10 ms)       |           |
|        | 5             | Event Time       | U16 | R/W     | 1 ms    | 500 (500 ms)      |           |

Tab. 68: RPDO-Kommunikationsparameter

#### (i) INFO

#### Kommunikationsparameter beschreiben

Die Kommunikationsparameter sind nur dann beschreibbar, wenn sich der xtremeBLOCK MIO1214 im Zustand **Pre-Operational** befindet.

| Index      | Subin-<br>dex | Beschreibung                                         | Тур | Zugriff | Einheit | Default-Wert                                                                                             |                                                                                      |
|------------|---------------|------------------------------------------------------|-----|---------|---------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 0x1800<br> | 0             | Anzahl der unter-<br>stützen Einträge                | U8  | R       |         | 0                                                                                                        |                                                                                      |
| 0x1803     | 1             | COB-ID (frei kon-<br>figurierbarer<br>Wert für PDOs) | U32 | R/W     |         | TPDO 1:<br>Index 0x1800<br>TPDO 2:<br>Index 0x1801<br>TPDO 3:<br>Index 0x1802<br>TPDO 4:<br>Index 0x1803 | 0x180<br>+ Node-ID<br>0x280<br>+ Node-ID<br>0x380<br>+ Node-ID<br>0x480<br>+ Node-ID |
|            | 2             | Transmission<br>Type                                 | U8  | R       |         | Azyklischer Typ =                                                                                        | 0                                                                                    |
|            | 3             | Inhibit Time                                         | U16 | R/W     | 0,1 ms  | 100 (10 ms)                                                                                              |                                                                                      |
|            | 5             | Event Time                                           | U16 | R/W     | 1 ms    | 500 (500 ms)                                                                                             |                                                                                      |

#### 8.6.2 TPDO-Kommunikationsparameter

Tab. 69: TPDO-Kommunikationsparameter

## (i) INFO

#### Kommunikationsparameter beschreiben

Die Kommunikationsparameter sind nur dann beschreibbar, wenn sich der xtremeBLOCK MIO1214 im Zustand **Pre-Operational** befindet.

Eine Beispielkonfiguration finden Sie im Kapitel Eingangswerte eines Interfaces via TPDO senden ▶ 57].

#### 8.6.3 Mapping-Tabellen

#### **TPDO-/RPDO-Mappingtabelle (vereinfacht)**

| PDO    | Bytes | Ports                                                       | Wert        | Länge in<br>Bit |
|--------|-------|-------------------------------------------------------------|-------------|-----------------|
| TPDO 1 | 1 2   | AI_1 AI_8<br>DI_P_1 DI_P_4<br>PWMi_H3_1 PWMI_H3_4           | I_DIGITAL   | 1               |
| TPDO 2 | 1 8   | AI_1 AI_4                                                   | I_VOLTAGE   | 16              |
| TPDO 3 | 1 8   | AI_5 AI_8                                                   | I_VOLTAGE   | 16              |
| TPDO 4 | 1 8   | DI_P_1 DI_P_4                                               | I_COUNTER   | 16              |
| RPDO 1 | 1 2   | PWMi_H3_1 PWMi_H3_4<br>PWM_H7_1 PWM_H7_6<br>DO_H3_1 DO_H3_4 | O_DIGITAL   | 1               |
| RPDO 2 | 1 8   | PWMi_H3_1 PWMi_H3_4                                         | O_DUTY_CYLE | 16              |
| RPDO 3 | 1 8   | PWM_H7_1 PWM_H7_4                                           | O_DUTY_CYLE | 16              |
| RPDO 4 | 1 4   | PWM_H7_5 PWM_H7_6                                           | O_DUTY_CYLE | 16              |

Tab. 70: TPDO-/RPDO-Mappingtabelle (vereinfacht)

| PDO<br>Nr. | Index  | Subindex | Beschreibung                     | Тур | Zugriff | Default-Wert |
|------------|--------|----------|----------------------------------|-----|---------|--------------|
| 1          | 0x1600 | 0        | Anzahl der unterstützen Einträge | U8  | R/W     | 2            |
|            |        | 1        | Erstes Objekt, das gemappt wird  | U32 | R/W     | 6200 01 08h  |
|            |        | 2        | Zweites Objekt, das gemappt wird | U32 | R/W     | 6200 02 08h  |
|            |        |          |                                  | U32 | R/W     |              |
|            |        | 64       | 64. Objekt, das gemappt wird     | U32 | R/W     |              |
| 2          | 0x1601 | 0        | Anzahl der unterstützen Einträge | U8  | R/W     | 4            |
|            |        | 1        | Erstes Objekt, das gemappt wird  | U32 | R/W     | 6411 01 10h  |
|            |        | 2        | Zweites Objekt, das gemappt wird | U32 | R/W     | 6411 02 10h  |
|            |        | 3        | Drittes Objekt, das gemappt wird | U32 | R/W     | 6411 03 10h  |
|            |        | 4        | Viertes Objekt, das gemappt wird | U32 | R/W     | 6411 04 10h  |
|            |        |          |                                  | U32 | R/W     |              |
|            |        | 64       | 64. Objekt, das gemappt wird     | U32 | R/W     |              |
| 3          | 0x1602 | 0        | Anzahl der unterstützen Einträge | U8  | R/W     | 4            |
|            |        | 1        | Erstes Objekt, das gemappt wird  | U32 | R/W     | 6411 05 10h  |
|            |        | 2        | Zweites Objekt, das gemappt wird | U32 | R/W     | 6411 06 10h  |
|            |        | 3        | Drittes Objekt, das gemappt wird | U32 | R/W     | 6411 07 10h  |
|            |        | 4        | Viertes Objekt, das gemappt wird | U32 | R/W     | 6411 08 10h  |
|            |        |          |                                  | U32 | R/W     |              |
|            |        | 64       | 64. Objekt, das gemappt wird     | U32 | R/W     |              |
| 4          | 0x1603 | 0        | Anzahl der unterstützen Einträge | U8  | R/W     | 2            |
|            |        | 1        | Erstes Objekt, das gemappt wird  | U32 | R/W     | 6411 09 10h  |
|            |        | 2        | Zweites Objekt, das gemappt wird | U32 | R/W     | 6411 0A 10h  |
|            |        |          |                                  | U32 | R/W     |              |
|            |        | 64       | 64. Objekt, das gemappt wird     | U32 | R/W     |              |

#### **RPDO-Mappingtabelle**

Tab. 71: RPDO-Mappingtabelle

#### **TPDO-Mappingtabelle**

| PDO<br>Nr. | Index  | Subindex | Beschreibung                     | Тур | Zugriff | Default-Wert |
|------------|--------|----------|----------------------------------|-----|---------|--------------|
| 1          | 0x1A00 | 0        | Anzahl der unterstützen Einträge | U8  | R/W     | 4            |
|            |        | 1        | Erstes Objekt, das gemappt wird  | U32 | R/W     | 6000 01 08h  |
|            |        | 2        | Zweites Objekt, das gemappt wird | U32 | R/W     | 6000 02 08h  |
|            |        | 3        | Drittes Objekt, das gemappt wird | U32 | R/W     | 6000 03 08h  |
|            |        | 4        | Viertes Objekt, das gemappt wird | U32 | R/W     | 6000 04 08h  |
|            |        |          |                                  | U32 | R/W     |              |
|            |        | 64       | 64. Objekt, das gemappt wird     | U32 | R/W     |              |
| 2          | 0x1A01 | 0        | Anzahl der unterstützen Einträge | U8  | R/W     | 4            |
|            |        | 1        | Erstes Objekt, das gemappt wird  | U32 | R/W     | 6401 01 10h  |
|            |        | 2        | Zweites Objekt, das gemappt wird | U32 | R/W     | 6401 02 10h  |
|            |        | 3        | Drittes Objekt, das gemappt wird | U32 | R/W     | 6401 03 10h  |
|            |        | 4        | Viertes Objekt, das gemappt wird | U32 | R/W     | 6401 04 10h  |
|            |        |          |                                  | U32 | R/W     |              |
|            |        | 64       | 64. Objekt, das gemappt wird     | U32 | R/W     |              |

| PDO<br>Nr. | Index  | Subindex | Beschreibung                     | Тур | Zugriff                          | Default-Wert |     |
|------------|--------|----------|----------------------------------|-----|----------------------------------|--------------|-----|
| 3          | 0x1A02 | 0        | Anzahl der unterstützen Einträge | U8  | R/W                              | 4            |     |
|            |        | 1        | Erstes Objekt, das gemappt wird  | U32 | R/W                              | 6401 05 10h  |     |
|            |        | 2        | Zweites Objekt, das gemappt wird | U32 | R/W                              | 6401 06 10h  |     |
|            |        | 3        | Drittes Objekt, das gemappt wird | U32 | R/W                              | 6401 07 10h  |     |
|            |        | 4        | Viertes Objekt, das gemappt wird | U32 | R/W                              | 6401 08 10h  |     |
|            |        |          |                                  | U32 | R/W                              |              |     |
|            |        | 64       | 64. Objekt, das gemappt wird     | U32 | R/W                              |              |     |
| 4          | 0x1A03 | 0        | Anzahl der unterstützen Einträge | U8  | R/W                              | 4            |     |
|            |        | 1        | Erstes Objekt, das gemappt wird  | U32 | R/W                              | 6401 09 10h  |     |
|            |        |          |                                  | 2   | Zweites Objekt, das gemappt wird | U32          | R/W |
|            |        | 3        | Drittes Objekt, das gemappt wird | U32 | R/W                              | 6401 0B 10h  |     |
|            |        | 4        | Viertes Objekt, das gemappt wird | U32 | R/W                              | 6401 0C 10h  |     |
|            |        |          |                                  | U32 | R/W                              |              |     |
|            |        | 64       | 64. Objekt, das gemappt wird     | U32 | R/W                              |              |     |

Tab. 72: TPDO-Mappingtabelle

#### Mapping-Eintrag U32

| Byte   | 0         | 1        | 2 und 3 |
|--------|-----------|----------|---------|
| Inhalt | Bit-Länge | Subindex | Index   |
|        |           |          |         |

Tab. 73: Mapping-Eintrag U32

#### 8.6.4 Mapping von Digitalwerten

Alternativ zum bitweisen Mapping von Digitalwerten auf PDOs können Sie auch die Objekte 0x6000 und 0x6200 für das Mapping von Digitalwerten verwenden.

#### Digitale Eingänge

Folgende Wert-Typen sind standardmäßig dem entsprechenden Interface-Typ zugeordnet:

| Interface-Typ | Wert-Typ  |
|---------------|-----------|
| DI_PNP        | I_DIGITAL |
| DI_NPN        | I_DIGITAL |

| Index  | Subindex | Beschreibung                                                           | Тур | Zugriff | Default-<br>Wert |
|--------|----------|------------------------------------------------------------------------|-----|---------|------------------|
| 0x6000 | 0        | Anzahl der unterstützen Einträge                                       | U8  | R       | 4                |
|        | 1        | Bit 0 … Bit 7: AI_1 … AI_8                                             | U8  | R       |                  |
|        | 2        | Bit 0 … Bit 3: DI_P_1 … DI_P_4<br>Bit 4 … Bit 7: PWMi_H3_1 … PWMi_H3_4 | U8  | R       |                  |
|        | 3        | Bit 0 … Bit 5: PWM_H7_1 … PWM_H7_6<br>Bit 6 … Bit 7: DO_H3_1 … DO_H3_2 | U8  | R       |                  |
|        | 4        | Bit 0 … Bit 1: DO_H3_3 … DO_H3_4<br>Bit 2 … Bit 7: nicht genutzt       | U8  | R       |                  |

Tab. 74: Objekt 0x6000 – Digitale Eingänge

#### Digitalwert anzeigen

Das SDO zeigt den Wert I\_DIGITAL für ausgewählte Werte. Wenn Sie den entsprechenden Port zuvor nicht für Digitalwerte konfiguriert haben, dann erfolgt keine Fehlermeldung und der Wert in diesem Bit ist nicht definiert.

#### Digitale Ausgänge

Folgenden Wert-Typen sind standardmäßig dem entsprechenden Interface-Typ zugeordnet:

| Interface-Typ | Wert-Typ  |
|---------------|-----------|
| DO_HS3        | O_DIGITAL |
| DO_HS7        | O_DIGITAL |

| Index  | Subindex | Beschreibung                                                                                             | Тур | Zugriff | Default-<br>Wert |
|--------|----------|----------------------------------------------------------------------------------------------------------|-----|---------|------------------|
| 0x6200 | 0        | Anzahl der unterstützen Einträge                                                                         | U8  | R       | 2                |
|        | 1        | Bit 0 … Bit 3: PWMi_H3_1 … PWMi_H3_4<br>Bit 4 … Bit 7: PWM_H7_1 … PWM_H7_4                               | U8  | R/W     |                  |
|        | 2        | Bit 0 … Bit 1: PWMi_H7_5 … PWMi_H7_6<br>Bit 2 … Bit 5: DO_H3_1 … DO_H3_4<br>Bit 6 … Bit 7: nicht genutzt | U8  | R/W     |                  |

 Tab. 75: Objekt 0x6200 – Digitale Ausgänge

#### 8.6.5 Mapping von Analogwerten

Zum Mapping von Analogwerten können Sie die Objekte 0x6401, 0x6402, 0x6411 und 0x6412 nutzen.

#### Analoge Eingänge

Folgenden Wert-Typen sind standardmäßig dem entsprechenden Interface-Typ zugeordnet:

| Interface-Typ | Wertetyp    | Mögliche Datentypen |
|---------------|-------------|---------------------|
| AI_VOLTAGE    | I_VOLTAGE   | U16, U32            |
| AI_CURRENT    | I_CURRENT   | U16, U32            |
| DI_PNP        | I_COUNTER   | U16, U32            |
| DI_NPN        | I_COUNTER   | U16, U32            |
| FI_PNP        | I_FREQUENCY | U32                 |
| FI_NPN        | I_FREQUENCY | U32                 |
| ENCI_PNP      | I_COUNTER   | U16, U32            |
| PWMO_HS3      | I_HCURRENT  | U16, U32            |
| DO_HS3        | I_HCURRENT  | U16, U32            |
| CPWMO_HS3     | I_HCURRENT  | U16, U32            |
| PWMO_HS7      | I_HCURRENT  | U16, U32            |
| DO_HS7        | I_HCURRENT  | U16, U32            |

**Tab. 76:** Analoge Eingänge – Interface-Typen, Wertetypen, Datentypen

| Index  | Subindex | Beschreibung                     | Тур         | Zugriff | Default-<br>Wert |
|--------|----------|----------------------------------|-------------|---------|------------------|
| 0x6401 | 0        | Anzahl der unterstützen Einträge | U8          | R       | 26               |
| 0x6402 | 1 8      | AI_1 AI_8                        | U16,<br>U32 | R       |                  |
|        | 9 12     | DI_P_1 DI_P_4                    | U16,<br>U32 | R       |                  |
|        | 13 16    | PWMi_H3_1 PWMi_H3_4              | U16,<br>U32 | R       |                  |
|        | 17 22    | PWM_H7_1 PWM_H7_6                | U16,<br>U32 | R       |                  |
|        | 23 26    | DO_H3_1 DO_H3_4                  | U16,<br>U32 | R       |                  |

Tab. 77: Objekte 0x6401 und 0x6402 - Analoge Eingänge

- Objekt 0x6401 = 16-Bit-Zugriffe
- Objekt 0x6402 = 32-Bit-Zugriffe

Bei einem 16-Bit-Zugriff (U16) auf einen Wert der Größe 0xfffe (dezimal 254) wird der Wert 0xfff (dezimal 255) zurückgegeben (Überlauf). Bei einem U16-Zugriff auf I\_COUNTER Wert-Typen sollten die oberen Bits ohne Überlaufverhalten ausmaskiert werden.

#### Analoge Ausgänge

Folgenden Wert-Typen sind standardmäßig dem entsprechenden Interface-Typ zugeordnet:

| Interface-Typ | Wert-Typ     | Mögliche Datentypen |
|---------------|--------------|---------------------|
| PWMO_HS3      | O_DUTY_CYCLE | U16, U32            |
| CPWMO_HS3     | O_HCURRENT   | U16, U32            |
| PWMO_HS7      | O_DUTY_CYCLE | U16, U32            |

| Index  | Subindex | Beschreibung                     | Тур         | Zugriff | Default-<br>Wert |
|--------|----------|----------------------------------|-------------|---------|------------------|
| 0x6411 | 0        | Anzahl der unterstützen Einträge | U8          | R       | 10               |
| 0x6412 | 1 4      | PWMi_H3_1 PWMi_H3_4              | U16,<br>U32 | R/W     |                  |
|        | 5 10     | PWM_H7_1 PWM_H7_6                | U16,<br>U32 | R/W     |                  |

 Tab. 78: Objekte 0x6411 und 0x6412 – Analoge Ausgänge

- Objekt 0x6411 = 16-Bit-Zugriffe
- Objekt 0x6412 = 32-Bit-Zugriffe

#### 8.6.6 Eingangswerte eines Interfaces via TPDO senden

Um Eingangswerte eines Interfaces via TPDO zu senden, befolgen Sie folgende Schritte:

- 1. Schalten Sie den xtremeBLOCK MIO1214 in den Zustand Pre-Operational.
- **2.** Weisen Sie das gewünschte Interface zu.
- 3. Machen Sie das TxPDO-Objekt ungültig.
- 4. Deaktivieren Sie das Mapping.
- 5. Tragen Sie den Mapping-Wert ein.

- 6. Aktivieren Sie das Mapping.
- 7. Machen Sie das TxPDO-Objekt gültig.
- 8. Schalten Sie den xtremeBLOCK MIO1214 in den Zustand Operational.

#### **STX-Beispiel**

Das folgende STX-Beispiel zeigt Ihnen auszugsweise, wie Sie den Wert Al1 Voltage auf TPDO1 ausgeben können.

```
//Schalte xtremeBLOCK MI01214 in den Zustand Pre-
Operational CanOpenSetCommand(
cCanChannel, CAN CMD NMT, CAN CMD NMT Value (
cxBLOCKNodeId, CAN NMT PREOPERATIONAL));
//AI 1 Port-Typ auf AI VOLTAGE (=1)
iTemp := 1;
CanOpenDownloadSDO(
cCanChannel, cxBLOCKNodeId, 0x2100, 1, CANOPEN DWORD, 4, iTemp,
iBusy); when SDOACCESS FINISHED(iBusy) continue;
//TxPDO-Objekt ungültig machen, oberstes Bit auf 1 setzen
dTemp := 0x8000000+0x180+0x30;
CanOpenDownloadSDO(
cCanChannel, cxBLOCKNodeId, 0x1800, 1, CANOPEN DWORD, 4, dTemp,
iBusy); when SDOACCESS FINISHED(iBusy) continue;
//Mapping deaktivieren
dTemp := 0;
CanOpenDownloadSDO(
cCanChannel, cxBLOCKNodeId, 0x1a00, 0, CANOPEN BYTE, 1, dTemp, iBusy);
when SDOACCESS FINISHED (iBusy) continue;
//Wert für AI1 Voltage eintragen
dTemp := 0x21000a10; // Index: 0x2100, Subindex 0x0a = 10, Länge 0x10 = 16 Bit
CanOpenDownloadSDO(
cCanChannel, cxBLOCKNodeId, 0x1a00, 1, CANOPEN DWORD, 4, dTemp,
iBusy); when SDOACCESS FINISHED (iBusy) continue;
//Mapping aktivieren
dTemp := 1; // Anzahl Mapping-Einträge
CanOpenDownloadSDO(
cCanChannel, cxBLOCKNodeId, 0x1a00, 0, CANOPEN BYTE, 1, dTemp, iBusy);
when SDOACCESS FINISHED (iBusy) continue;
//Objekt gültig machen, oberstes Bit auf 0 setzen, PDO-COB angeben
dTemp := 0x180+0x30;
CanOpenDownloadSDO(
cCanChannel, cxBLOCKNodeId, 0x1800, 1, CANOPEN DWORD, 4, dTemp,
iBusy); when SDOACCESS FINISHED(iBusy) continue;
//Schalte xtremeBLOCK MI01214 in den Zustand Operational
CanOpenSetCommand(
cCanChannel, CAN CMD NMT, CAN CMD NMT Value (
cxBLOCKNodeId, CAN NMT OPERATIONAL));
```

#### 8.7 Frequenzmessung an den digitalen Eingängen

Für die Frequenzmessung an den digitalen Eingängen stehen 2 Messmethoden zur Verfügung:

- Torzeitmessung
- Impulslängenmessung

#### Torzeitmessung

Die Torzeit (GATE\_TIME) ist der Zeitraum, in dem Impulse gezählt werden. Messungen hochfrequenter Signale können damit gut erfasst werden. Die Werte I\_FREQUENCY und I\_PERIODIC\_TIME werden über dieses Verfahren ermittelt.

Um für Signale mit niedriger Frequenz die Auflösung von 0,1 Hz zu erreichen, muss die Torzeit entsprechend angepasst werden. Die maximale Torzeit beträgt 10 Sekunden.

# INFO Torzeit und Update-Rate Eine Torzeit von 10 s bedeutet, dass die Update-Rate ebenfalls 10 s beträgt.

#### Impulslängenmessung

Diese Methode eignet sich zur Auflösung niedriger Frequenzen. Sie basiert auf der Zeitdauer zwischen den Flankenwechseln. Dazu ist es erforderlich, die Werte I\_HPULSE\_TIME und I\_LPULSE\_TIME extern zu verrechnen:

f [mHz] = 10<sup>9</sup> / (I\_HPULSE\_TIME + I\_LPULSE\_TIME)

## INFO Verschlechterung der Auflösung Bei der Impulslängenmessung wird die Auflösung mit steigender Frequenz schlechter.

#### 8.8 Erfassen von Encoder-Signalen

Mit dem Interface ENCI\_PNP können Sie Encoder-Signale erfassen. Die Encoder-Eingänge haben keine Entprellung.

| (i) INFO | Automatische Konfiguration der Eingänge als ENCI_PNP                                                                                                                 |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Für die Erfassung von Encoder-Signalen sind immer 2 Eingänge erforder-<br>lich.                                                                                      |
|          | Wenn Sie z.B. den Eingang DI_P_3 als ENCI_PNP konfigurieren, dann<br>wird der benachbarte Eingang DI_P_4 automatisch ebenfalls als<br>ENCI_PNP konfiguriert.         |
|          | Wenn Sie nun einen der beiden Eingänge umkonfigurieren, dann wird der<br>benachbarte Eingang automatisch INAKTIV – es werden keine Encoder-<br>Signale mehr erfasst. |

#### Auflösung

Die Auflösung stellen Sie über den Parameter RESOLUTION ein.

| RESOLUTION            | Laufrichtung | Auflösung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>0</b><br>(Default) | Vorwärts     | $DI_P_3 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 1 \ 2 \ 1 \ 1 \ 2 \ 1 \ 1 \ 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | Rückwärts    | $DI_P_3 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$                 |
| 1                     | Vorwärts     | $DI_P_3 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$ |
|                       | Rückwärts    | $DI_P_3 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$                                 |
| 2                     | Vorwärts     | $DI_P_3 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$                                 |
|                       | Rückwärts    | $DI_P_3 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 3 \ 4 \ 1 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$                                 |

Tab. 79: Auflösung der Encoder-Signale

#### Eingangswerte für ENCI\_PNP

Sie können die folgenden Eingangswerte abfragen:

| Eingangswert | Beschreibung                                        | PDO-Sendebedingung |
|--------------|-----------------------------------------------------|--------------------|
| I_COUNTER    | Vorwärts- und rückwärtslaufen-<br>der 32-Bit-Zähler | Event Time         |
| I_DIRECTION  | Aktuelle Laufrichtung                               | Bei Veränderung    |

Tab. 80: Eingangswerte für ENCI\_PNP

#### Stillstand signalisieren

Mit dem Parameter TIMEOUT\_TIME bestimmen Sie, nach welcher Zeit ein Stillstand signalisiert werden soll. Der Default-Wert ist 1.000 ms, d. h. wenn 1.000 ms lang keine Impulse mehr kommen, dann ist I\_DIRECTION = 0.

#### 8.9 NMT-Kommandos

Der xtremeBLOCK MIO1214 unterstützt folgende NMT-Kommandos:

| NMT-Kommandos  | Beschreibung                                                                                                                |
|----------------|-----------------------------------------------------------------------------------------------------------------------------|
| RESET          | Setzt den xtremeBLOCK MIO1214 zurück                                                                                        |
| PREOPERATIONAL | Wechselt in den Zustand Pre-Operational                                                                                     |
| OPERATIONAL    | Wechselt in den Zustand Operational                                                                                         |
| START          | Startet den xtremeBLOCK MIO1214                                                                                             |
| STOP           | Stoppt den xtremeBLOCK MIO1214, der<br>xtremeBLOCK MIO1214 sendet aber weiterhin<br>Heartbeat und akzeptiert NMT-Kommandos. |

 Tab. 81: Unterstützte NMT-Kommandos

#### 8.10 Fehlerbehandlung

#### Emergency-Object-Telegramme (EMCY-Telegramme)

Die EMCY-Telegramme werden beim Start oder nach Änderungen mit einer Inhibit Time von 50 ms versendet.

| Byte | Inhalte                                  |                   |
|------|------------------------------------------|-------------------|
| 0 1  | Emergency Error Code                     |                   |
| 2    | = Fehlerregister                         | Objekt 0x1001     |
| 3    | I/O-Offset 0x21nn, dabei                 | ist nn der Offset |
| 4 7  | 7 = Herstellerspezifisches "Error Field" |                   |
|      | Es wird immer 0 gesende                  | et.               |

 Tab. 82: Byte-Werte der Emergency-Objekte

#### Fehlerspeicher (Error History)

Die EMCY-Fehler werden in einem Stapelspeicher abgelegt. Über den Subindex 1 erhalten Sie Zugriff auf den neuesten Fehler.

| Byte | Inhalte                               |               |
|------|---------------------------------------|---------------|
| 0.   | 1 = Emergency Error Code              |               |
|      | 2 = Fehlerregister                    | Objekt 0x1001 |
|      | 3 = I/O-Offset 0x21nn, dabei ist nn d | er Offset     |

Tab. 83: Byte-Werte des Fehlerspeichers

Der Fehlerspeicher ist über den Index 0x1003 erreichbar.

| Index  | Subindex | Beschreibung                                                                          | Тур | Zugriff | Default-<br>Wert |
|--------|----------|---------------------------------------------------------------------------------------|-----|---------|------------------|
| 0x1003 | 0        | Anzahl der Fehler                                                                     | U8  | R/W     | 0                |
|        |          | Die Eingabe von 0 löscht den ge-<br>samten Speicher. Werte > 0 sind<br>nicht erlaubt. |     |         |                  |
|        | 1        | Neuester "Error Field"-Eintrag                                                        | U32 | R       |                  |
|        | 2 254    | Weitere aktuelle "Error Field"-<br>Einträge                                           | U32 | R       |                  |

Tab. 84: Subindizes des Fehlerspeichers

#### **Emergency Error Codes**

| Code   | Beschreibung                                         |
|--------|------------------------------------------------------|
| 0x0000 | Kein Fehler oder Fehler-Reset                        |
| 0x1000 | Generischer Fehler                                   |
| 0x2300 | Gesamtstrom ist zu hoch                              |
| 0x3100 | Spannung außerhalb des geforderten Toleranzbereichs  |
| 0x4200 | Gerätetemperatur zu hoch                             |
| 0x8110 | CAN-Data-Overrun (Objekte verloren)                  |
| 0x8130 | Life-Guard-Error oder Heartbeat-Error                |
| 0x8140 | Wiederhergestellt aus dem Zustand Bus-Off            |
| 0x8210 | Verarbeitungsfehler durch fehlerhafte Länge der PDOs |
| 0x8220 | PDO-Länge überschritten                              |
| 0xff00 | Konfigurationsfehler am Gerät                        |
| 0xff01 | I/O-Port OVERVOLTAGE                                 |
| 0xff02 | I/O-Port OVERCURRENT                                 |
| 0xff03 | I/O-Port SUPPLYFAULT                                 |
| 0xff05 | I/O-Port OPEN_CIRCUIT                                |
| 0xff06 | I/O-Port TIMEOUT                                     |
| 0xff07 | I/O-Port CC_UNLOCK                                   |

Tab. 85: Emergency-Error-Codes

#### 8.10.1 Heartbeat

Das Gerät sendet zyklisch eine Heartbeat-Nachricht, sobald es sich im Zustand **Pre-Operational** befindet.

| Index                                  | Subindex | Beschreibung                  | Тур | Zugriff | Default-Wert |
|----------------------------------------|----------|-------------------------------|-----|---------|--------------|
| 0x1017                                 | 0        | Producer Heartbeat Time in ms | U16 | R/W     | 1000         |
| Tab. 86: Index der Heartheat Nachricht |          |                               |     |         |              |

Tab. 86: Index der Heartbeat-Nachricht

#### Heartbeat-Überwachung

Die Anzahl der zu überwachenden Heartbeats lässt sich mit der entsprechenden Master-Node-ID und entsprechendem Timeout über die Steuerung einstellen. Wenn das Gerät keinen Heartbeat innerhalb der angegebenen Timeout-Zeit erkennt (z. B. im Falle eines Kommunikationsabbruchs) erfolgt der Wechsel in den Zustand **Stopped** und die Ausgänge werden energiefrei geschaltet.

| Index  | Sub-<br>index | Beschre  | eibung                                 |         |                       | Тур | Zugriff | Default-<br>Wert |
|--------|---------------|----------|----------------------------------------|---------|-----------------------|-----|---------|------------------|
| 0x1016 | 0             | Anzahl d | Anzahl der zu überwachenden Heartbeats |         |                       | U8  | R/W     | 0                |
|        | 1 4           | Zu überv | Zu überwachende Node-ID und Timeout    |         |                       | U32 | R/W     |                  |
|        |               |          | MSB                                    |         | LSB                   |     |         |                  |
|        |               | Bits     | 31 24                                  | 23 16   | 15 0                  |     |         |                  |
|        |               | Wert     | Reserviert<br>(Wert: 00h)              | Node-ID | Heartbeat-<br>Timeout |     |         |                  |
|        |               | Тур      | -                                      | U8      | U16                   |     |         |                  |

Tab. 87: Heartbeat-Überwachung

#### Wertebereiche

- Node-ID: 0 ... 127
- Heartbeat-Timeout: 0 ... 65535 (in ms)

#### Beispiel

| Kommando                            | Beschreibung                                |
|-------------------------------------|---------------------------------------------|
| r 0x1016 0                          | Lese Anzahl überwachbarer Node-IDs.         |
| w 0x1016140x007F03e8                | Setze erste zu überwachende Node-ID auf 127 |
| ■ 1 = erster Eintrag                | mit Timeout 1.000 ms.                       |
| ■ 4 = 4 Bytes (U32)                 |                                             |
| 00 = Reserviert                     |                                             |
| ■ 7F = 127 (Node-ID)                |                                             |
| ■ <u>3e8</u> = 1000 (Timeout in ms) |                                             |
| r 0x1016 1                          | Lese erste Konfiguration im ersten Eintrag. |

Tab. 88: Beispiel Heartbeat-Überwachung

#### 8.11 Stromregelung mit PID-Regler

Die einzelnen P-, I- und D-Regler haben üblicherweise folgende Charakteristik:



Abb. 15: Vergleich der Reglertypen in einem Regelkreis

| Α | Sprungantwort |
|---|---------------|
| В | Zeit          |

#### 8.11.1 Testszenario

Die Regelung wurde am xtremeBLOCK MIO1214 unter den folgenden Bedingungen getestet:

| Bedingung | Beschreibung  |                                                                   |
|-----------|---------------|-------------------------------------------------------------------|
| Ausgang   | PWM mit 1 kHz |                                                                   |
| Regelzeit | 10 ms         |                                                                   |
| Last      | induktiv      | eine nicht weiter bezeichnete Ventilspule                         |
| VBAT      | 24 V          | Spule macht bei einem Kurzschluss 4,8 A $\rightarrow$ ~5 $\Omega$ |

 Tab. 89: Rahmenbedingungen des Testszenarios

Es wurde ein Testszenario aufgebaut, bei dem der Sollwert zwischen 0,3 A und 0,7 A hin- und herschaltet.



Regelparameter: P = 100.000, I = 0, D = 0 Gemessen: Blau = Sollwert, Rot = Istwert

Abb. 16: Testszenario mit den Regelparametern P = 100.000, I = 0, D = 0

Der P-Regler arbeitet mit diesem Wert gut. Der Sollwert wird jedoch nicht erreicht, was dem typischen Verhalten eines P-Reglers entspricht (siehe Stromregelung mit PID-Regler ▶ 64]).



Regelparameter: P = 100.000, I = 5.000, D = 0 Gemessen: Blau = Sollwert, Rot = Istwert



Der I-Regler arbeitet ebenfalls zufriedenstellend, der Sollwert wird bei dieser Einstellung erreicht.



Abb. 18: Testszenario mit den Regelparametern P = 100.000, I = 5.000, D = 400

Der D-Regler bewirkt, dass sich der Istwert dem Sollwert schneller annähert.





Abb. 19: Testszenario mit den Regelparametern P = 100.000, I = 10.000, D = 400

In diesem Beispiel wurde zu Anschauungszwecken die Periode des Sollsignales mit ca. 10 ms gewählt. Für eine schnelle Regelung sollte insbesondere der P-Wert erhöht werden und die Abtastzeit auf 5 ms verkleinert werden. Es können Einregelzeiten < 50 ms erreichet werden.

#### 8.11.2 Strommessung an den PWMi\_H3\_X-Ausgängen

Die Strommessung an den PWMi\_H3\_X-Ausgängen wird über einen Shunt-Widerstand realisiert. Am Messverstärker befindet sich ein Tiefpass mit R \* C = 1 ms. Dieser Tiefpass sorgt für einen integralen Anteil.

Gemessen wird der arithmetische Mittelwert. Die CPU misst den Strom ausschließlich in der Mitte der Einschaltzeit des PWM-Signals. Es wird kein Verhältnis der Einschaltzeit zur Ausschaltzeit berechnet, daher ist ein integraler Anteil für eine möglichst korrekte Messung notwendig.

Üblicherweise haben Ventile durch ihre Eigeninduktivität schon eine gute Mittelung des Laststromes. Rein ohmsche Lasten können am Regler betrieben werden, wenn die PWM-Frequenz auf 1 kHz gesetzt wird. Hierfür ist der oben aufgeführte Tiefpass vorgesehen. Für kleinere Frequenzen (z. B. 100 Hz) ist die Strommessung an rein ohmschen Lasten zu ungenau.

#### 8.12 Dither-Technik zur Ansteuerung von Hydraulikventilen

Proportionale Hydraulikventile werden üblicherweise mit PWM-Signalen von 100 Hz ... 200 Hz angesteuert. Die niedrige Frequenz bewirkt, dass die Ventilnadel nicht vollständig zur Ruhe kommt und die Ansteuerung ohne größere Hystereseeffekte funktioniert.

Ist eine Ansteuerung des Ventils nur mit höheren Frequenzen (1 kHz) zulässig, so kann das PWM-Signal moduliert werden. Diese als Dither-Technik bezeichnete Ansteuerung bewirkt ebenfalls, dass die Nadel nicht zur Ruhe kommt. Im xtremeBLOCK MIO1214 können Sie dieses Dither-Signal in Frequenz und Amplitude einstellen:

- Mit Hilfe der Dither-Amplitude legen Sie die Änderung der Impulslänge des Ausgangssignals fest (max. 20 % der Periodenlänge).
- Mit Hilfe der Dither-Frequenz legen Sie die Häufigkeit der Änderung fest (100 Hz ... 200 Hz).



Abb. 20: Dithering

| (i) INFO | Wenn Sie die Dither-Technik in Verbindung mit dem PID-Regler verwen-                                                                          |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|          | den wollen, dann testen Sie zuvor gewissenhaft das Regelverhalten. Die<br>Modulation verändert durchgehend den Ist-Wert des Reglers. Wenn die |
|          | Regelung nicht zufriedenstellend funktioniert, dann können Sie Folgendes versuchen:                                                           |
|          | <ul> <li>Setzen Sie die Amplitude des Dither-Signals herab.</li> </ul>                                                                        |
|          | <ul> <li>Verwenden Sie den Mittelwertfilter an der Stromrücklesung des Aus-<br/>ganges.</li> </ul>                                            |
|          | Verändern Sie die PID-Parameter.                                                                                                              |

## 9 INSTANDHALTUNG

|                                        | 9.1 | Wartung, Instandsetzung und Entsorgung                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wartung                                |     | Das Gerät ist wartungsfrei.<br>Im laufenden Betrieb sind keine Inspektions- und Wartungsarbeiten nötig.                                                                                                                                                                                                                                                                                                           |
| Instandsetzung                         |     | Defekte Komponenten können zu gefährlichen Fehlfunktionen führen und die Si-<br>cherheit beeinflussen.<br>Instandsetzungsarbeiten am Gerät dürfen nur durch den Hersteller erfolgen.<br>Das Öffnen des Geräts ist untersagt.                                                                                                                                                                                      |
| Entsorgung                             |     | Für die Entsorgung gilt die Environmental Product Declaration EPD. Die gelten-<br>den Umweltschutzrichtlinien und Vorschriften des Betreiberlandes müssen einge-<br>halten werden. Das Produkt ist als Elektronikschrott zu entsorgen. Verpackungs-<br>materialien müssen der Wiederverwendung zugeführt werden.                                                                                                  |
| Umbauten und<br>Veränderungen<br>Gerät | am  | Umbauten und Veränderungen am Gerät und dessen Funktion sind nicht gestat-<br>tet. Umbauten am Gerät führen zum Verlust jeglicher Haftungsansprüche.                                                                                                                                                                                                                                                              |
|                                        |     | Die Originalteile sind speziell für das Gerät konzipiert. Die Verwendung von Tei-<br>len und Ausstattungen anderer Hersteller ist nicht zulässig.                                                                                                                                                                                                                                                                 |
|                                        |     | Für Schäden, die durch die Verwendung von nicht originalen Teilen und Ausstat-<br>tungen entstehen, ist jegliche Haftung ausgeschlossen.                                                                                                                                                                                                                                                                          |
|                                        | 9.2 | Lagerung und Transport                                                                                                                                                                                                                                                                                                                                                                                            |
| Lagerung                               |     | Beachten Sie bei der Einlagerung des Geräts die Umweltbedingungen im Kapitel Technische Daten.                                                                                                                                                                                                                                                                                                                    |
| Transport und<br>Verpackung            |     | Das Produkt enthält elektrostatisch gefährdete Bauelemente, die durch unsach-<br>gemäße Behandlung beschädigt werden können. Beschädigungen am Gerät<br>können dessen Zuverlässigkeit beeinträchtigen.                                                                                                                                                                                                            |
|                                        |     | Zum Schutz vor Schlag- und Stoßeinwirkungen muss der Transport in der Origi-<br>nalverpackung oder in einer geeigneten elektrostatischen Schutzverpackung er-<br>folgen.<br>Prüfen Sie bei beschädigter Verpackung das Gerät auf sichtbare Schäden und<br>informieren Sie umgehend den Transporteur und die Jetter AG über Transport-<br>schäden. Bei Beschädigungen oder nach einem Sturz ist die Verwendung des |
|                                        |     | Ociais unicisayi.                                                                                                                                                                                                                                                                                                                                                                                                 |

## 10 SERVICE

#### 10.1 Kundendienst

Bei Fragen, Anregungen oder Problemen steht Ihnen unser Kundendienst mit seiner Expertise zur Verfügung. Diesen können Sie telefonisch über unsere Technische Hotline oder über unsere Support Emailadresse erreichen:

#### +49 7191 904 369-10

support@data-panel.eu

Bei E-Mail- oder Telefonkontakt benötigt unser Support folgende Informationen:

- Hardware-Revision und Seriennummer Die Seriennummer und Hardware-Revision Ihres Produkts entnehmen Sie dem Typenschild.
- Betriebssystemversion
   Die Betriebssystemversion entnehmen Sie aus dem Index 0x100A.
### 11 ERSATZTEILE UND ZUBEHÖR



### HINWEIS

### Ungeeignetes Zubehör kann Produktschäden verursachen

Teile und Ausstattungen anderer Hersteller können Funktionsbeeinträchtigungen und Produktschäden verursachen.

 Verwenden Sie ausschließlich von der Jetter AG empfohlenes Zubehör.

#### 11.1 Zubehör

(i) INFO

Zubehör bestellen

Das Zubehör ist nicht im Lieferumfang enthalten.

Geeignetes Zubehör ist bei der Data Panel GmbH erhältlich.

| Zubehör                                                                                                                                                           | Inhalt | Artikelnummer       |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|--|--|
| Busabschluss 120 Ω AT4S                                                                                                                                           | 1      | <u>DP-34042-747</u> |  |  |
| Node-ID-Stecker N01                                                                                                                                               | 1      | DP-34042-731        |  |  |
| Node-ID-Stecker N02                                                                                                                                               | 1      | DP-34042-732        |  |  |
| Node-ID-Stecker N03                                                                                                                                               | 1      | DP-34042-733        |  |  |
| Node-ID-Stecker N04                                                                                                                                               | 1      | DP-34042-734        |  |  |
| Node-ID-Stecker N05                                                                                                                                               | 1      | DP-34042-735        |  |  |
| Node-ID-Stecker N06                                                                                                                                               | 1      | DP-34042-736        |  |  |
| Node-ID-Stecker N07                                                                                                                                               | 1      | DP-34042-737        |  |  |
| Node-ID-Stecker N08                                                                                                                                               | 1      | DP-34042-738        |  |  |
| Blindstecker AT4                                                                                                                                                  | 1      | DP-34042-743        |  |  |
| AT Stecker incl. Wedgelock reduzierte<br>Dichtung                                                                                                                 | 1      | <u>DP-34042-749</u> |  |  |
| Blindstopfen, reduzierter Durchmesser                                                                                                                             | 10     | DP-34042-795        |  |  |
| AT Stecker incl. Wedgelock Standarddichtung                                                                                                                       | 1      | DP-34042-740        |  |  |
| Blindstopfen, Standarddurchmesser                                                                                                                                 | 10     | DP-34042-796        |  |  |
| Gedrehte Buchsenkontakte                                                                                                                                          | 4      | DP-34042-793        |  |  |
| 0,5 bis 1,5 mm² Aderquerschnitt                                                                                                                                   |        |                     |  |  |
| Vorkonfektionierte IP69K Anschlussleitungen und weiteres Zubehör in höchster Qualität finden Sie in unserem Data Panel Shop ( <u>https://www.data-panel.eu</u> ). |        |                     |  |  |

Tab. 90: Zubehör

## ABBILDUNGSVERZEICHNIS

| Abb. 1  | Verdrahtungsbeispiel Sicherheitsschaltgerät                           | 9  |
|---------|-----------------------------------------------------------------------|----|
| Abb. 2  | Aufbau                                                                | 10 |
| Abb. 3  | LED-Anzeige                                                           | 11 |
| Abb. 4  | Typenschild 1                                                         | 13 |
| Abb. 5  | Typenschild 2                                                         | 13 |
| Abb. 6  | Abmessungen in mm                                                     | 14 |
| Abb. 7  | Diagramm: Prinzip der Linearisierung                                  | 19 |
| Abb. 8  | Horizontale Einbaulage                                                | 23 |
| Abb. 9  | Einbaulagen, Angaben in mm                                            | 24 |
| Abb. 10 | Anschlüsse                                                            | 27 |
| Abb. 11 | 2-Draht-Sensoren anschließen (analog)                                 | 31 |
| Abb. 12 | 2-Draht-Sensoren anschließen (digital)                                | 32 |
| Abb. 13 | 3-Draht-Sensoren anschließen                                          | 33 |
| Abb. 14 | Konzept und Ansteuerung                                               | 39 |
| Abb. 15 | Vergleich der Reglertypen in einem Regelkreis                         | 64 |
| Abb. 16 | Testszenario mit den Regelparametern P = 100.000, I = 0, D = 0        | 65 |
| Abb. 17 | Testszenario mit den Regelparametern P = 100.000, I = 5.000, D = 0    | 65 |
| Abb. 18 | Testszenario mit den Regelparametern P = 100.000, I = 5.000, D = 400  | 66 |
| Abb. 19 | Testszenario mit den Regelparametern P = 100.000, I = 10.000, D = 400 | 66 |
| Abb. 20 | Dithering                                                             | 67 |

# TABELLENVERZEICHNIS

| Tab. 1  | Anschluss X2 – VBAT_IN                | 9  |
|---------|---------------------------------------|----|
| Tab. 2  | Mechanische Eigenschaften             | 15 |
| Tab. 3  | Versorgung der Ausgangstreiber        | 15 |
| Tab. 4  | Versorgung der ECU                    | 15 |
| Tab. 5  | Massebezug                            | 15 |
| Tab. 6  | Umweltbedingungen                     | 16 |
| Tab. 7  | Impulse ISO 7637-2                    | 16 |
| Tab. 8  | Impulse ISO 16750-2                   | 16 |
| Tab. 9  | Einstrahlung ISO 11452                | 16 |
| Tab. 10 | Störstromeinspeisung ISO 11452-4      | 17 |
| Tab. 11 | Abstrahlung CISPR 25                  | 17 |
| Tab. 12 | ESD EN 61000-4-2                      | 17 |
| Tab. 13 | Ausgänge PWMi_H3_1 PWMi_H3_4          | 17 |
| Tab. 14 | Ausgänge PWM_H7_1 PWM_H7_6            | 18 |
| Tab. 15 | Ausgänge DO_H3_1 DO_H3_4              | 18 |
| Tab. 16 | Sensorausgang VEXT_SEN                | 19 |
| Tab. 17 | Analoge Eingänge                      | 20 |
| Tab. 18 | Digitale Eingänge DI_P_1 DI_P_4       | 21 |
| Tab. 19 | Konfigurationseingänge CFG1 CFG2      | 21 |
| Tab. 20 | Anforderungen an die Montagefläche    | 23 |
| Tab. 21 | Montagematerial                       | 24 |
| Tab. 22 | Anschluss X1 – VBAT_OUT               | 27 |
| Tab. 23 | Anschluss X2 – VBAT_IN                | 27 |
| Tab. 24 | Anschluss X4 – CAN_IN                 | 28 |
| Tab. 25 | Anschluss X5 – CAN_OUT                | 28 |
| Tab. 26 | Anschluss X6 – Al_1 … Al_2            | 28 |
| Tab. 27 | Anschluss X7 – AI_3 … AI_4            | 28 |
| Tab. 28 | Anschluss X8 – AI_5 … AI_6            | 28 |
| Tab. 29 | Anschluss X9 – AI_7 … AI_8            | 28 |
| Tab. 30 | Anschluss X10 – DI_P_1 … DI_P_2       | 28 |
| Tab. 31 | Anschluss X11 – DI_P_3 … DI_P_4       | 29 |
| Tab. 32 | Anschluss X12 - CFG                   | 29 |
| Tab. 33 | Anschluss X13 – PWM_H7_5              | 29 |
| Tab. 34 | Anschluss X14 – PWMi_H3_1 … PWMi_H3_2 | 29 |
| Tab. 35 | Anschluss X15 – DO_H3_1 DO_H3_2       | 29 |
| Tab. 36 | Anschluss X16 – PWM_H7_3              | 29 |
| Tab. 37 | Anschluss X17 – PWM_H7_6              | 29 |
| Tab. 38 | Anschluss X18 – PWMi_H3_3 … PWMi_H3_4 | 30 |
| Tab. 39 | Anschluss X19 – DO_H3_3 DO_H3_4       | 30 |
|         |                                       |    |

| Tab. 40 | Anschluss X20 – PWM_H7_4                                   | 30 |
|---------|------------------------------------------------------------|----|
| Tab. 41 | Anschluss X21 – PWM_H7_1 PWM_H7_2                          | 30 |
| Tab. 42 | Verwendete Abkürzungen                                     | 30 |
| Tab. 43 | Anschluss X6 – AI_1 … AI_2                                 | 32 |
| Tab. 44 | Anschluss X10 – DI_P_1 … DI_P_2                            | 32 |
| Tab. 45 | Anschluss X11 – DI_P_3 … DI_P_4                            | 32 |
| Tab. 46 | Anschluss X6 – AI_1 … AI_2                                 | 33 |
| Tab. 47 | Anschluss X10 – DI_P_1 DI_P_2                              | 34 |
| Tab. 48 | Geräteinformationen                                        | 35 |
| Tab. 49 | EDS-Information                                            | 36 |
| Tab. 50 | Elektronisches Typenschild                                 | 36 |
| Tab. 51 | JetEasyDownload Parameter                                  | 37 |
| Tab. 52 | Übersicht Ports und zulässige Interfaces                   | 39 |
| Tab. 53 | SDO-Abbilder der I/O-Ports                                 | 40 |
| Tab. 54 | Subindizes für den Zugriff auf Parameter, Werte und Status | 40 |
| Tab. 55 | Übersicht - I/O- Interfaces                                | 42 |
| Tab. 56 | Eingangswerte                                              | 45 |
| Tab. 57 | Ausgangswerte                                              | 45 |
| Tab. 58 | Parameter                                                  | 45 |
| Tab. 59 | Status                                                     | 48 |
| Tab. 60 | CFG-Stecker (X12) Pinbelegung                              | 48 |
| Tab. 61 | CFG-Pins Steckbrücken                                      | 49 |
| Tab. 62 | Gerätediagnose                                             | 49 |
| Tab. 63 | Statusinformation                                          | 49 |
| Tab. 64 | Einstellungen im EEPROM speichern                          | 50 |
| Tab. 65 | Einstellungen auf Default-Werte zurücksetzen               | 50 |
| Tab. 66 | Systemparameter                                            | 51 |
| Tab. 67 | Gültigkeit eines PDOs                                      | 52 |
| Tab. 68 | RPDO-Kommunikationsparameter                               | 52 |
| Tab. 69 | TPDO-Kommunikationsparameter                               | 53 |
| Tab. 70 | TPDO-/RPDO-Mappingtabelle (vereinfacht)                    | 53 |
| Tab. 71 | RPDO-Mappingtabelle                                        | 54 |
| Tab. 72 | TPDO-Mappingtabelle                                        | 54 |
| Tab. 73 | Mapping-Eintrag U32                                        | 55 |
| Tab. 74 | Objekt 0x6000 – Digitale Eingänge                          | 55 |
| Tab. 75 | Objekt 0x6200 – Digitale Ausgänge                          | 56 |
| Tab. 76 | Analoge Eingänge – Interface-Typen, Wertetypen, Datentypen | 56 |
| Tab. 77 | Objekte 0x6401 und 0x6402 – Analoge Eingänge               | 57 |
| Tab. 78 | Objekte 0x6411 und 0x6412 – Analoge Ausgänge               | 57 |
| Tab. 79 | Auflösung der Encoder-Signale                              | 60 |
| Tab. 80 | Eingangswerte für ENCI_PNP                                 | 60 |
| Tab. 81 | Unterstützte NMT-Kommandos                                 | 61 |

| Tab. 82 | Byte-Werte der Emergency-Objekte    | 61 |
|---------|-------------------------------------|----|
| Tab. 83 | Byte-Werte des Fehlerspeichers      | 61 |
| Tab. 84 | Subindizes des Fehlerspeichers      | 62 |
| Tab. 85 | Emergency-Error-Codes               | 62 |
| Tab. 86 | Index der Heartbeat-Nachricht       | 63 |
| Tab. 87 | Heartbeat-Überwachung               | 63 |
| Tab. 88 | Beispiel Heartbeat-Überwachung      | 63 |
| Tab. 89 | Rahmenbedingungen des Testszenarios | 64 |
| Tab. 90 | Zubehör                             | 71 |
|         |                                     |    |



Data Panel GmbH Blumenstraße 22/1 71522 Backnang Deutschland ① Fon +49 7191 904 369-10 昌 Fax +49 7191 904 369-99 info@data-panel.eu www.data-panel.eu



Decentralization at its best